Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Vĩnh Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 phòng GD&ĐT Vĩnh Lộc - Thanh Hóa Xin chào đến với đề giao lưu HSG Toán lớp 7 năm 2016 - 2017 của phòng GD&ĐT Vĩnh Lộc - Thanh Hóa! Đề thi này sẽ cung cấp cho các em học sinh lớp 7 một cơ hội để thử thách kiến thức và kỹ năng Toán của mình. Trong đề thi này, chúng ta sẽ gặp phải những bài toán phức tạp như phân giác của tam giác, tính độ dài cạnh của tam giác khi biết độ dài 3 đường cao, và chứng minh rằng một số là vô tỉ. Ví dụ: Cho tam giác ABC (AB < AC, góc B = 60 độ). Hai phân giác AD và CE của ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. Hãy tính AIC và độ dài cạnh AK biết PK = 6cm, AH = 4 cm. Chứng minh IDE cân. Hãy cố gắng giải quyết và hiểu rõ từng bước để trả lời các câu hỏi này. Hãy học tập và chuẩn bị tốt nhất cho đề thi giao lưu HSG Toán lớp 7 năm 2016 - 2017 này. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát HSG Toán 7 lần 2 năm 2015 - 2016 trường THCS Bồ Lý - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 lần 2 năm 2015 – 2016 trường THCS Bồ Lý – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho một dãy số gồm tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 30 là: -29, -28, -27, …, -1, 0, 1, …,27, 28, 29. Các số nguyên trên được đánh số thứ tự một cách tùy ý. Lấy mỗi số đó trừ đi số thứ tự của nó ta được một hiệu. Hãy tính tổng của tất cả các hiệu đó. + Cho tam giác ABC vuông tại A, đường cao AH (H BC). Về phía ngoài của tam giác ABC vẽ các tam giác ABE vuông cân tại B và tam giác ACF vuông cân tại C. Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh rằng: a) 0 BAH EBC 180 từ đó suy ra BAI EBC. b) BI = CE và ba điểm E, A, F thẳng hàng. c) Ba đường thẳng AH, CE, BF cắt nhau tại một điểm. + Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện: a ab a b b. Tính giá trị của biểu thức 2 2 Ta b.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Yên Lập - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh: a) K là trung điểm của AC. b) KMC là tam giác đều. c) Cho BK = 2cm. Tính các cạnh AKM. + Tìm nghiệm nguyên dương của phương trình x + y + z = xyz.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.