Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa kỳ thi tuyển sinh lớp 10 THPT năm học 2018 - 2019 môn Toán sở GD và ĐT TP. HCM

Đề minh họa kỳ thi tuyển sinh lớp 10 THPT năm học 2018 – 2019 môn Toán sở Giáo dục và Đào tạo thành phố Hồ Chí Minh gồm 10 bài toán tự luận, thời gian làm bài 120 phút. Đề thi có lời giải chi tiết. Trích dẫn đề thi : + Một con robot được thiết kế có thể đi thẳng, quay một góc 90 độ sang phải hoặc sang trái. Robot xuất phát từ vị trí A đi thẳng 1 m, quay sang trái rồi đi thẳng 1 m, quay sang phải rồi đi thẳng 3 m, quay sang trái rồi đi thẳng 1 m đến đích tại vị trí B. Tính theo đơn vị mét khoảng cách giữa đích đến và nơi xuất phát của robot (ghi kết quả gần đúng chính xác đến 1 chữ số thập phân). + Thực hiện chương trình khuyến mãi “Ngày Chủ Nhật Vàng” một của hàng điện máy giảm giá 50% trên 1 ti vi cho lô hàng ti vi gồm có 40 cái với giá được bán lẻ trước đó là 6.500.000 đồng/cái. Đến trưa cùng ngày thì cửa hàng đã bán được 20 cái và của hàng quyết định giảm giá thêm 10% nữa (so với giá đã giảm lần 1) cho số ti vi còn lại. a. Tính số tiền mà cửa hàng thu được sau khi bán hết lô hàng ti vi. b. Biết rằng giá vốn là 2.850.000 đồng/cái ti vi. Hỏi của hàng lời hay lỗ khi bán hết lô hàng ti vi đó? [ads] + Kính lão đeo mắt của người già thường là một loại thấu kính hội tụ. Bạn Năm đã dùng một chiếc kính lão của ông ngoại để tạo ra hình ảnh của một cây nến trên tấm màn. Cho rằng cây nến là một vật sangscos hình dạng đoạn thẳng AB đặt vuông góc với trục chính của một thấu kính hội tụ, cách thấu kính đoạn OA  2 m. Thấu kính có quang tâm O và tiêu điểm F. Vật AB cho ảnh thật A B’ ‘ gấp ba lần AB (có đường đi của tia sáng được mô tả như hình vẽ). Tính tiêu cự OF của thấu kính. + Có 45 người gồm bác sĩ và luật sư, tuổi trung bình của họ là 40. Tính số bác sĩ, luật sư biết rằng tuổi trung bình của bác sĩ là 35, tuổi trung bình của luật sư là 50. + Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt trái đất khoảng 36000 km, tâm quỹ đạo vệ tinh trùng với tâm O của Trái Đất. Vệ tinh phát tín hiệu vô tuyến theo một đường thẳng đến một vị trí trên mặt đất. Hỏi vị trí xa nhất trên trái đất có thể nhận được tín hiệu từ vệ tinh này ở cách vệ tinh một khoảng bao nhiêu km (ghi kết quả gần đúng chính xác đến hàng đơn vị). Biết rằng Trái Đất được xem như một hình cầu có bán kính khoảng 6400 km.

Nguồn: toanmath.com

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường TH Cao Nguyên – Đắk Lắk gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn tâm O, từ A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm). Gọi E là giao điểm của OA và BC. a. Chứng minh tứ giác ABOC nội tiếp. b. Chứng minh BA.BE = AE.BO. c. Gọi I là trung điểm của BE, đường thẳng qua I và vuông góc với OI cắt tia AB và AC theo thứ tự tại D và F. Chứng minh góc IDO và góc BCO bằng nhau và tam giác DOF cân. + Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Chứng minh rằng MK + ML = MH .
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Lạng Sơn gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thanh Hóa gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình: nx^2 + x – 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. [ads] + Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. 1. Chứng minh ONFP là tứ giác nội tiếp. 2. Chứng minh: OF vuông góc với MQ và PM.PF = PO.PQ. 3. Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất.