Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 10 môn Toán lần 2 năm 2020 2021 trường THPT Quang Hà Vĩnh Phúc

Nội dung Đề kiểm tra lớp 10 môn Toán lần 2 năm 2020 2021 trường THPT Quang Hà Vĩnh Phúc Bản PDF Đề kiểm tra chuyên đề môn Toán lớp 10 lần 2 năm học 2020 – 2021 trường THPT Quang Hà – Vĩnh Phúc được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 07 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề kiểm tra Toán lớp 10 lần 2 năm 2020 – 2021 trường THPT Quang Hà – Vĩnh Phúc : + Một xưởng sản xuất hai loại sản phẩm loại I và loại II từ 200kg nguyên liệu và một máy chuyên dụng. Để sản xuất được một kilôgam sản phẩm loại I cần 2kg nguyên liệu và máy làm việc trong 3 giờ. Để sản xuất được một kilôgam sản phẩm loại II cần 4kg nguyên liệu và máy làm việc trong 1,5 giờ. Biết một kilôgam sản phẩm loại I lãi 300000 đồng, một kilôgam sản phẩm loại II lãi 400000 đồng và máy chuyên dụng làm việc không quá 120 giờ. Hỏi xưởng cần sản xuất bao nhiêu kilôgam sản phẩm mỗi loại để tiền lãi lớn nhất? + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5ha. Để chăm bón các loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Xác định dạng của tam giác ABC biết các góc A, B, C của tam giác đó thỏa mãn hệ thức.

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát lần 3 Toán 10 năm 2018 - 2019 trường Nguyễn Đăng Đạo - Bắc Ninh
Đề thi khảo sát lần 3 Toán 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 110 gồm 04 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Trích dẫn đề thi khảo sát lần 3 Toán 10 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong mặt phẳng Oxy, cho hình chữ nhật ABCD với AD = 2AB. Gọi M, N lần lượt là trung điểm của AD, BC. Điểm K(5;-1) đối xứng với M qua N. Phương trình đường thẳng chứa cạnh AC là: 2x + y – 3 = 0. Biết A(a;b) (b > 0). Tính tổng a + b. [ads] + Cho hai hàm số f(x) = |x + 2| – |x – 2|, g(x) = -|x|. Khẳng định nào sau đây đúng? A. f(x) là hàm số chẵn, g(x) là hàm số lẻ. B. f(x) là hàm số lẻ, g(x) là hàm số chẵn. C. f(x) là hàm số lẻ, g(x) là hàm số lẻ. D. f(x) là hàm số chẵn, g(x) là hàm số chẵn. + Cho hàm số f(x) = x^2 – 2(m + 1/m)x + m. Đặt a, b lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của f(x) trên đoạn [-1;1]. Gọi S là tập hợp tất cả các giá trị của tham số m sao cho: b – a = 8. Tính tổng của các phần tử thuộc S.
Đề khảo sát Toán 10 lần 3 năm 2018 - 2019 trường Lương Tài 2 - Bắc Ninh
Ngày 17 tháng 03 năm 2019, trường THPT Lương Tài số 2, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra khảo sát chất lượng lần 3 môn Toán 10 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 3 năm 2018 – 2019 trường Lương Tài 2 – Bắc Ninh có mã đề 132 gồm 04 trang với 50 câu hỏi và bài tập dạng trắc nghiệm, thời gian học sinh làm bài là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 10 lần 3 năm 2018 – 2019 trường Lương Tài 2 – Bắc Ninh : + Cho phương trình x^2 – x – 1 = 0? Chọn khẳng định ĐÚNG? A. Phương trình có 2 nghiệm dương phân biệt. B. Phương trình vô nghiệm. C. Phương trình có 2 nghiệm trái dấu. D. Phương trình có nghiệm kép. [ads] + Cho tam giác ABC có G là trọng tâm, I, J, K lần lượt là trung điểm GA, GB, GC. Tìm tập hợp điểm M thỏa mãn: |4MA + MB + MC| = 2|AB – AC|? A. Đường tròn tâm G, bán kính BC. B. Đường tròn tâm J, bán kính 2/3BC. C. Đường tròn tâm K, bán kính 1/6BC. D. Đường tròn tâm I, bán kính 1/3BC. + Cho bất phương trình √(2x – 4) ≤ 2. Chọn khẳng định đúng? A. Tập nghiệm của bất phương trình là: (-∞; 4). B. Tập nghiệm của bất phương trình là: (-∞; 4]. C. Tập nghiệm của bất phương trình là: (2; 4]. D. Tập nghiệm của bất phương trình là: [2; 4].
Đề thi KSCL Toán 10 lần 2 năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Vừa qua, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát chất lượng Toán 10 lần thứ hai năm học 2018 – 2019, kỳ thi nhằm giúp nhà trường và giáo viên nắm rõ chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề thi KSCL Toán 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc mã đề 132 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, đề thi có đáp án. [ads] Trích dẫn đề thi KSCL Toán 10 lần 2 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Để sản xuất 100 sản phẩm thì Mai và Lan cùng làm hết 72 giờ, Lan và Chi cùng làm hết 63 giờ, còn Mai và Chi cùng làm hết 60 giờ. Trong buổi tổng kết sắp tới trưởng cơ sở sản xuất muốn thưởng cho một người sản xuất năng suất nhất. Hỏi ai sẽ được thưởng? + Mệnh đề nào sau đây là mệnh đề sai ? A. Điểm G là trọng tâm của tam giác ABC thì GA + GB + GC = 0. B. Tứ giác ABCD là hình bình hành thì AC = AB + AD. C. Với ba điểm bất kì O, A, B thì AB = OA – OB. D. Gọi I là trung điểm của đoạn thẳng AB với điểm M bất kì thì 2MI = MA + MB. + Cho hai hàm số f(x) = -x^4 + 8x^2 + 2019 và g(x) = √(1 – x^2). Khẳng định nào sau đây là đúng? A. Hàm số f(x) và g(x) không chẵn không lẻ. B. Hàm số f(x) chẵn, hàm số g(x) không chẵn không lẻ. C. Hàm số f(x) chẵn, hàm số g(x) lẻ. D. Hàm số f(x) và g(x) đều chẵn.
Đề khảo sát Toán 10 lần 2 năm 2018 2019 trường THPT Lê Xoay Vĩnh Phúc
Tuần qua, trường THPT Lê Xoay, tỉnh Vĩnh Phúc đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán 10 lần 2 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019. Đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc có mã đề 125, đề gồm 06 trang được biên soạn theo dạng trắc nghiệm với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 10 theo từng giai đoạn để thúc đẩy nâng cao chất lượng học tập. Trích dẫn đề khảo sát Toán 10 lần 2 năm 2018 – 2019 trường THPT Lê Xoay – Vĩnh Phúc : + Cho tam giác ABC không vuông với độ dài các đường cao kẻ từ đỉnh B, C lần lượt là hb, hc, độ dài đường trung tuyến kẻ từ đỉnh A là ma, biết hb = 8, hc = 6, ma = 5. Tính cos A. [ads] + Cho ba số dương a, b, c có tổng bằng 1. Giá trị lớn nhất của biểu thức P = a + √ab + (abc)^1/3 là? + Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng? A. Nếu b^2 + c^2 – a^2 < 0 thì góc A nhọn. B. Nếu b^2 + c^2 – a^2 < 0 thì góc A vuông. C. Nếu b^2 + c^2 – a^2 > 0 thì góc A tù. D. Nếu b^2 + c^2 – a^2 > 0 thì góc A nhọn.