Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát lớp 9 môn Toán tháng 01 năm 2022 trường THCS Ngọc Thụy Hà Nội

Nội dung Đề thi khảo sát lớp 9 môn Toán tháng 01 năm 2022 trường THCS Ngọc Thụy Hà Nội Bản PDF - Nội dung bài viết Đề thi khảo sát lớp 9 môn Toán tháng 01 năm 2022 trường THCS Ngọc Thụy Hà Nội Đề thi khảo sát lớp 9 môn Toán tháng 01 năm 2022 trường THCS Ngọc Thụy Hà Nội Thứ Năm ngày 20 tháng 01 năm 2022, trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội đã tổ chức kì thi khảo sát chất lượng môn Toán lớp 9 tháng 01 năm học 2021 – 2022. Đề thi khảo sát Toán lớp 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian giao đề). Trích dẫn một số bài toán từ đề thi khảo sát Toán lớp 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội: Giải bài toán sau bằng cách lập phương trình: Một mảnh đất hình chữ nhật có chu vi là 120m. Nếu tăng chiều rộng 5m và giảm chiều dài đi 25% thì chu vi mảnh đất giảm đi 10m. Tính diện tích của mảnh đất hình chữ nhật ban đầu? Hằng năm vào dịp đầu xuân, người dân Việt Nam trồng cây nêu trước cổng nhà. Nếu chiều cao của cây nêu được ước lượng từ việc chiếu trực tiếp tia nắng mặt trời tạo ra bóng của cây nêu trên mặt đất, hãy tính chiều cao của cây nêu biết rằng tia nắng mặt trời chiếu xuống hợp với mặt đất một góc 53 độ và khoảng cách từ gốc cây đến điểm chiếu bóng là 4,6m. Cho nửa đường tròn có tâm O, bán kính R và đường kính AB. Một số câu hỏi liên quan đến các góc và tiếp xúc của đường thẳng và nửa đường tròn. Các bài toán trong đề thi khảo sát Toán lớp 9 tháng 01 năm 2022 trường THCS Ngọc Thụy – Hà Nội đều đòi hỏi học sinh có kiến thức vững chắc và khả năng giải quyết vấn đề theo cách logic và sáng tạo. Đây là bước kiểm tra không chỉ sự am hiểu của học sinh về kiến thức mà còn là khả năng áp dụng và phân tích vấn đề theo nhiều khía cạnh khác nhau.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCSTHPT Newton - Hà Nội
Đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS&THPT Newton – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS&THPT Newton – Hà Nội : + Cho hai biểu thức A và B 1) Tính giá trị biểu thức A khi x = 25. 2) Chứng minh B 3) Tìm x để B < 3/4. 4) Cho P = A : B. Với giá trị nguyên nào của x thì P đạt giá trị nhỏ nhất, xác định giá trị nhỏ nhất đó. + Đài kiểm soát không lưu Nội Bài cao 95m. Ở một thời điểm nào đó vào ban ngày, mặt trời chiếu tạo bóng của Đài kiểm soát dài 200m trên mặt đất. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu? (Hình minh họa như hình bên). (Kết quả làm tròn đến độ). + Cho tam giác ABC vuông tại A, đường cao AH. 1) Giả sử BH = 4cm; AB = 6cm. Xác định tâm và bán kính của đường tròn ngoại tiếp ABC. 2) Qua B kẻ đường thẳng vuông góc với AB, cắt AH tại D. Chứng minh: 3) Lấy một điểm O bất kì trong tam giác ABC, gọi M, N, P lần lượt là hình chiếu của điểm O trên cạnh BC, CA và AB. Hãy xác định vị trí điểm O để đạt giá trị nhỏ nhất.
Đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Lê Ngọc Hân - Hà Nội
Đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Lê Ngọc Hân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một người đi xe máy từ nhà đến công ty với vận tốc 40km/h. Người đó ở lại làm việc trong 3 giờ rồi đi xe máy quay về nhà với vận tốc 30km/h, tổng cộng hết 6 giờ 30 phút kể cả thời gian làm việc. Tính quãng đường từ nhà đến công ty của người đó. + Bài toán thực tế: Để đo chiều cao của một ngọn tháp, không thể trèo lên đỉnh. Người ta dùng thước dài, thước đo góc và đèn laser thực hiện thao tác đo thu được kết quả như hình vẽ. Hãy tính chiều cao của tháp (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho ΔABC có đường cao AH. Kẻ HD vuông góc AB tại D. Biết AH = 8cm; AB = 10cm. a) Tính HB, HD. b) Biết góc ACB = 30 độ. Giải ΔAHC. c) Kẻ HE vuông góc với AC. Chứng minh rằng ΔAED đồng dạng với ΔABC. d) Tính diện tích tứ giác BDEC (kết quả làm tròn đến chữ số thập phân thứ 3).
Đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Quỳnh Mai - Hà Nội
Đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Quỳnh Mai – Hà Nội gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 30 tháng 09 năm 2021, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2021 trường THCS Quỳnh Mai – Hà Nội : + Giải bài toán bằng cách lập phương trình: Quãng đường từ A đến B dài 90km. Một người đi xe máy từ A đến B. Khi đến B người đó nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn vận tốc lúc đi là 9km/giờ. Thời gian cả đi lẫn về là 5 giờ. Tính vận tốc xe máy lúc đi từ A đến B. + Bóng của cột anten trên mặt đất dài 15m và góc tạo bởi tia nắng và mặt đất bằng 67. Hỏi cột anten cao bao nhiêu mét?( làm tròn đến chữ số thập phân thứ nhất). Chú thích: Cột anten kiểu cây dừa thân thiện môi trường. Kiểu cột anten monopole tự đứng được ngụy trang thành một cây dừa phổ biến ở các vùng nhiệt đới.Vẻ ngoài gần giống như cây thật, tạo nên sự hài hòa thân thiện với cảnh quan môi trường tự nhiên xung quanh nơi nó được lắp đặt. Các tán lá ngụy trang để che dấu anten hoàn toàn không ảnh hưởng tới chức năng làm việc của anten. Thân cột bằng các đoạn ống thép côn mạ kẽm nhúng nóng ghép lồng nhau, bên ngoài thân ống bọc plastic giả làm vỏ cây dừa.Vật liệu chế tạo vỏ cây lá cây bằng loại chất dẻo tổng hợp kháng UV tính bền màu tốt độ bền cao. + Cho x; y > 0 và thỏa mãn: x + y =< 1. Tìm giá trị nhỏ nhất của 2 2 1 1 P 4xy.
Đề khảo sát Toán 9 tháng 9 năm 2021 trường M.V. Lômônôxốp - Hà Nội
Đề khảo sát Toán 9 tháng 9 năm 2021 trường M.V. Lômônôxốp – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán 9 tháng 9 năm 2021 trường M.V. Lômônôxốp – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một địa phương lên kế hoạch xét nghiệm cho toàn bộ người dân trong một thời gian quy định. Dự định mỗi ngày xét nghiệm được 500 người. Tuy nhiên, nhờ cải tiến phương pháp nên mỗi ngày xét nghiệm được thêm 300 người. Vì thế, địa phương này hoàn thành xét nghiệm sớm hơn kế hoạch là 3 ngày. Hỏi theo kế hoạch, địa phương này dự định xét nghiệm trong thời gian bao lâu? + Một bể bơi hình chữ nhật có độ dài đường chéo BC là 12m. Góc tạo bởi đường chéo BC và chiều rộng AB của bể là 60. Em hãy tính chiều dài AC của bể bơi. + Cho tam giác ABC vuông tại A AB AC có đường cao AH và đường trung tuyến AM H M BC. 1) Cho AB BC 6 10. Tính BH và sin ACB. 2) Gọi D là điểm đối xứng của A qua M. Chứng minh rằng: 2 CD BH BC. 3) Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của hai đường thẳng CT và BQ. Chứng minh rằng: T là trực tâm của tam giác BCQ và BAP AQB.