Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Giới thiệu Đề học sinh giỏi Toán lớp 7 năm 2021 - 2022 Giới thiệu Đề học sinh giỏi Toán lớp 7 năm 2021 - 2022 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán lớp 7 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Đề thi bao gồm các câu hỏi thú vị và thách thức, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Trích dẫn một số câu hỏi từ đề học sinh giỏi Toán lớp 7 năm 2021 - 2022 của phòng GD&ĐT Diễn Châu - Nghệ An: + Bài toán về phép phân loại học sinh theo khối: Ba khối 6, 7, 8 của một trường THCS có tổng cộng 441 học sinh. Biết rằng số học sinh của ba khối tham gia cuộc thi "Đấu trường Toán học VIOEDU" mà số học sinh còn lại của ba khối bằng nhau. Hãy tính số học sinh mỗi khối của trường. + Bài toán về tính chất hình học của tam giác: Khi có đề bài mô tả về tam giác ABC, học sinh cần chứng minh rằng tồn tại một số tính chất nhất định của tam giác đó. Ví dụ, trong trường hợp tam giác ABC có điểm trung điểm D của cạnh BC, điểm E trên cạnh AB sao cho AE vuông góc với AB và AE = AB, và điểm K trên cạnh AC sao cho AK vuông góc với AC và AK = AC, học sinh sẽ cần chứng minh một số quy luật hình học. + Bài toán về số học: Tìm số tự nhiên n có hai chữ số biết rằng hai số (2n + 1) và (3n + 1) đồng thời là số chính phương. Hãy chứng minh rằng với mọi số tự nhiên n lớn hơn 2, tổng của hai số đó cũng là số chính phương. Đề học sinh giỏi Toán lớp 7 năm 2021 - 2022 phòng GD&ĐT Diễn Châu - Nghệ An sẽ là cơ hội cho các em học sinh thể hiện khả năng, rèn luyện kỹ năng giải quyết vấn đề và trau dồi kiến thức Toán hữu ích. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Đông Hưng Thái Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 phòng GD&ĐT Đông Hưng - Thái Bình Xin chào quý thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi Toán lớp 7 năm 2018-2019 của phòng GD&ĐT Đông Hưng - Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm để các em tham khảo. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC có góc A tù. Kẽ AD // AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE // AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM // DE. Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD = 1/2BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. Không dùng máy tính, hãy tính giá trị của biểu thức S. Hy vọng đây sẽ là tài liệu hữu ích để các em ôn tập và chuẩn bị cho kì thi sắp tới. Chúc các em học tốt!
Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội
Nội dung Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ lớp 7 môn Toán năm 2018 2019 quận Đống Đa Hà Nội Đề thi Olympic tài năng trẻ Toán lớp 7 năm 2018 – 2019 của cụm trường THCS quận Đống Đa, Hà Nội bao gồm 01 trang với 4 câu tự luận. Đề thi được tổ chức nhằm tạo cơ hội cho các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội cùng giao lưu, tuyển chọn. Mục tiêu của đề thi là tuyên dương, khen thưởng và thúc đẩy nâng cao chất lượng học tập môn Toán lớp 7.
Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương
Nội dung Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Chào mừng đến với Đề thi Olympic Toán lớp 7 năm 2017-2018 từ phòng GD&ĐT Kinh Môn - Hải Dương. Bộ đề thi này bao gồm đề thi, đáp án chi tiết và lời giải, cung cấp hướng dẫn chấm điểm một cách chi tiết. Dưới đây là một số câu hỏi trích dẫn từ đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương: Cho tam giác ABC có góc A nhỏ hơn 90 độ. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. Hãy chứng minh rằng: MC = BN và BN = CM. Hãy kẻ AH song song với BC. Chứng minh rằng AH đi qua trung điểm của MN. Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Hãy tính số đo AMB? Cho biết (x - 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm. Đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương chắc chắn sẽ đem đến cho các em học sinh những thách thức và cơ hội để rèn luyện kỹ năng toán học của mình. Chúc các em thành công và phát triển trong hành trình học tập của mình!
Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán Hồ Khắc Vũ Tài liệu "Tuyển tập 150 đề thi học sinh giỏi lớp 7 môn Toán" bao gồm 157 trang với 150 đề thi được lựa chọn từ các trường THCS, cơ sở GD và ĐT trên khắp cả nước. Tài liệu được tổng hợp và biên soạn bởi thầy Hồ Khắc Vũ.