Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quốc Oai Hà Nội

Nội dung Đề Olympic lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Quốc Oai Hà Nội Đề thi Olympic Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Quốc Oai Hà Nội Chào các thầy cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến bạn đề thi Olympic môn Toán cho lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Đề thi gồm các câu hỏi thú vị và bổ ích như sau: Bài 1: Cho đa thức P(x) với hệ số nguyên, biết P(2) = 10 và P(-2) = -6. Hãy tìm đa thức P(x) biết rằng khi chia cho đa thức x^2 - 4, ta được thương là (2x + 6) và còn dư. Bài 2: Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B vào các giờ khác nhau, với vận tốc lần lượt là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? Bài 3: Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. Hãy giải các yêu cầu sau: a/ Tứ giác AMDB là hình gì? b/ Chứng minh rằng EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh rằng tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Nếu CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16, hãy tính các cạnh của hình chữ nhật ABCD. Hy vọng rằng đề thi sẽ giúp các em ôn tập và rèn luyện kỹ năng Toán một cách hiệu quả. Chúc các em thành công và giải đề thi thật tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận
Nội dung Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Chào quý thầy cô và các em học sinh lớp 8! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi học sinh giỏi huyện Toán lớp 8 năm học 2018 - 2019 do phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận tổ chức. 1. Bài toán đầu tiên yêu cầu chúng ta tìm giá trị của x sao cho biểu thức A = (x - 1)(x + 2)(x + 3)(x + 6) đạt giá trị nhỏ nhất. Để giải bài toán này, chúng ta cần áp dụng kiến thức về đạo hàm và điểm cực tiểu của hàm số. 2. Bài toán tiếp theo đưa ra hình bình hành ABCD với DC = 2AD, I là trung điểm của cạnh CD, HI vuông góc với AB tại H. Gọi E là giao điểm của AI và DH. Chúng ta cần chứng minh một số quy luật trong tam giác và hình học để giải quyết bài toán này. 3. Bài toán cuối cùng liên quan đến tam giác vuông ABC tại A, với AD là phân giác và BD = 14√3, CD = 3√17. Chúng ta cần tính độ dài các cạnh góc vuông của tam giác. Đây là bài toán yêu cầu chúng ta áp dụng kiến thức về phân giác trong tam giác và tính chất của tam giác vuông. Qua các bài toán trên, chúng ta sẽ học được nhiều kiến thức và kỹ năng mới trong môn Toán. Chúc quý thầy cô và các em học sinh có kỳ thi học sinh giỏi thành công!
Đề thi HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thị xã Giá Rai Bạc Liêu
Nội dung Đề thi HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thị xã Giá Rai Bạc Liêu Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT thị xã Giá Rai - Bạc Liêu Đề thi HSG Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT thị xã Giá Rai - Bạc Liêu Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề thi HSG môn Toán lớp 8 năm 2018 - 2019 của phòng GD&ĐT thị xã Giá Rai - Bạc Liêu. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em học sinh ôn tập và chuẩn bị tốt cho kì thi sắp tới.
Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tài liệu này bao gồm 89 trang với 100 đề thi chọn lọc từ học sinh giỏi môn Toán lớp 8 đến từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Được biên soạn và tổng hợp bởi thầy Hồ Khắc Vũ, tài liệu này sẽ giúp các em học sinh chuẩn bị tốt hơn cho kì thi học sinh giỏi.
Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên được thiết kế với 6 bài toán tự luận, dành cho học sinh có kiến thức và kỹ năng Toán cao cấp. Thời gian làm bài được giới hạn trong 60 phút để thử thách sự nhanh nhạy và chính xác của thí sinh. Bài toán đầu tiên yêu cầu học sinh chứng minh Tứ giác AMDN là hình gì và vị trí của điểm D trên cạnh BC để đạt được độ dài MN nhỏ nhất, cùng tính số đo góc MHN trong tam giác ABC. Bài toán thứ hai yêu cầu học sinh chứng minh rằng biểu thức (x - 1)(2x^2 + x + 1) - (x - 2)(2x^2 + 3x + 6) không phụ thuộc vào các biến, làm quen với phép toán đơn giản nhưng logic và chính xác. Bài toán thứ ba đưa ra bài toán tìm giá trị của x và y sao cho 9xy + 3x + 3y = 51, kích thích khả năng suy luận và giải quyết vấn đề của học sinh. Trong bài toán cuối cùng, học sinh sẽ phải tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 - 4xy + 6x - 14y + 15, yêu cầu kết hợp nhiều phép toán và kiến thức Toán học để giải quyết bài toán phức tạp. Đề thi này không chỉ đánh giá kiến thức mà còn khích lệ học sinh phát huy sự sáng tạo, logic và khả năng giải quyết vấn đề, từ đó phát triển tư duy Toán học toàn diện. Đồng thời, cũng giúp học sinh thấy được mục tiêu mà họ cần hướng đến và cần cố gắng nỗ lực hơn trong học tập.