Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Mặt cầu ngoại tiếp, nội tiếp khối đa diện - Lê Bá Bảo

Tài liệu gồm 22 trang trình bày phương pháp giải toán và bài tập trắc nghiệm có lời giải chi tiết chủ đề mặt cầu ngoại tiếp, nội tiếp khối đa diện. MẶT CẦU NGOẠI TIẾP, NỘI TIẾP KHỐI ĐA DIỆN I – PHƯƠNG PHÁP 1. Chứng minh mặt cầu S(O;R) ngoại tiếp đa diện Thông thường ta chứng minh mặt cầu đi qua tất cả các đỉnh của đa diện thông qua một số nhận xét quan trọng sau: + Điểm M thuộc S(O;R) ⇔ OM = R. + Điểm M thuộc S(O;R) khi chỉ khi M nhìn đường kính của mặt cầu dưới 1 góc vuông. 2. Điều kiện cần và đủ + Để một hình chóp có mặt cầu ngoại tiếp là đáy của hình chóp có đường tròn ngoại tiếp. + Để một hình lăng trụ có mặt cầu ngoại tiếp là hình lăng trụ đó phải là hình lăng trụ đứng và có đáy lăng trụ là một đa giác nội tiếp. 3. Mặt phẳng trung trực của đoạn thẳng Cho đoạn thẳng AB. Mặt phẳng (α) được gọi là mặt phẳng trung trực của đoạn thẳng AB khi mp (α) đi qua trung điểm I của AB và vuông góc với AB. Lưu ý : (α) là tập hợp tất cả các điểm M trong không gian cách đều A, B. [ads] Dạng toán: CHỨNG MINH KHỐI ĐA DIỆN NỘI TIẾP MẶT CẦU 1. Thuật toán 1: SỬ DỤNG MỘT TRỤC XÁC ĐỊNH TÂM MẶT CẦU NGOẠI TIẾP ĐA DIỆN Cho hình chóp SA1A2 … An (thoả mãn điều kiện tồn tại mặt cầu ngoại tiếp). Thông thường, để xác định mặt cầu ngoại tiếp hình chóp ta thực hiện theo hai bước: + Bước 1: Xác định tâm của đường tròn ngoại tiếp đa giác đáy. Dựng Δ: trục đường tròn ngoại tiếp đa giác đáy. + Bước 2: Lập mặt phẳng trung trực (α) của một cạnh bên. Lúc đó: + Tâm O của mặt cầu: Δ ∩ mp(α) = O. + Bán kính: R = OA (= OS). Tuỳ vào từng trường hợp. 2. Thuật toán 2: SỬ DỤNG HAI TRỤC XÁC ĐỊNH TÂM MẶT CẦU NGOẠI TIẾP ĐA DIỆN Cho hình chóp SA1A2 … An (thỏa mãn điều kiện tồn tại mặt cầu ngoại tiếp). Thông thường, để xác định mặt cầu ngoại tiếp hình chóp ta thực hiện theo hai bước: + Bước 1: Xác định tâm của đường tròn ngoại tiếp đa giác đáy. Dựng Δ: trục đường tròn ngoại tiếp đa giác đáy. + Bước 2: Xác định trục d của đường tròn ngoại tiếp một mặt bên (dễ xác định) của khối chóp. Lúc đó: + Tâm I của mặt cầu: Δ ∩ d = I. + Bán kính: R = IA (= IS). Tuỳ vào từng trường hợp. II – BÀI TẬP TRẮC NGHIỆM MINH HỌA III -BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Chuyên đề mặt nón
Tài liệu gồm 31 trang được biên soạn bởi quý thầy, cô giáo trong nhóm Tài Liệu Dạy Thêm, bao gồm lý thuyết mặt nón, bài tập mẫu, bài tập tự luyện và bài tập trắc nghiệm chuyên đề mặt nón. Nội dung tài liệu : A. KIẾN THỨC CẦN NHỚ : Tóm tắt các khái niệm, tính chất, công thức tính diện tích – thể tích mặt nón, hình nón. 1. Mặt nón tròn xoay. 2. Hình nón tròn xoay. 3. Một số tính chất. 4. Công thức diện tích và thể tích của hình nón. B. BÀI TẬP MẪU C. BÀI TẬP TỰ LUYỆN D. BÀI TẬP TRẮC NGHIỆM 1. Tính diện tích, thể tích mặt nón đơn thuần. 2. Quay tam giác. 3. Mặt nón ngoại tiếp khối đa diện.
Trắc nghiệm nâng cao nón - trụ - cầu - Đặng Việt Đông
Tài liệu gồm 131 trang được biên soạn bởi thầy Đặng Việt Đông tuyển chọn các bài toán trắc nghiệm nâng cao nón – trụ – cầu có lời giải chi tiết trong chương trình Hình học 12 chương 2, các bài toán được chọn lọc từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi ôn luyện điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. + Vấn đề 1. Mặt nón – khối nón + Vấn đề 2. Mặt trụ – khối trụ + Vấn đề 3. Mặt cầu – khối cầu + Vấn đề 4. Mặt tròn xoay – khối tròn xoay + Vấn đề 5. Ứng dụng thực tế Xem thêm :  Trắc nghiệm nâng cao hình học tọa độ Oxyz – Đặng Việt Đông (Hình học 12 chương 3)
Kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian - Hà Duy Nghĩa
Tài liệu sáng kiến kinh nghiệm được biên soạn bởi thầy Hà Duy Nghĩa gồm 20 trang, trình bày một số kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian. Tài liệu trình bày các vấn đề : + Bài toán liên quan đến thể tích khối đa diện: Trình bày một số kỹ thuật tính thể tích thông qua việc phân chia các thể tích cũng như tính tỉ số thể tích trực tiếp, gián tiếp và những ưu khuyết điểm của nó. + Bài toán liên quan đến tâm, bán kính mặt cầu ngoại tiếp hình đa diện: Trình bày về vấn đề hay gặp là tìm bán kính mặt cầu ngoại tiếp khối chóp và lăng trụ còn về tâm mặt cầu thì chỉ đề cập. + Bài toán liên quan đến hình tròn xoay: Trình bày một số bài toán liên quan đến thể tích các vật thể tròn xoay trong thực tế, các dạng bài tập tương tự như các bài trong đề thi minh họa và đề thử nghiệm.
Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
Cuốn sách Tài liệu chuyên Toán THPT chuyên đề Hình học không gian gồm 160 trang được biên soạn bởi các tác giả Trần Đức Huyên, Nguyễn Duy Hiếu (trường THPT chuyên Lê Hồng Phong – TP. HCM nhằm giúp các em học sinh khối 11 – 12 cải thiện và nâng cao kỹ năng giải toán Hình học không gian và hướng đến kỳ thi THPTQG. Nội dung sách : Phần 1. Lý thuyết và phương pháp giải toán Chương 1. Hình lăng trụ Chương 2. Hình hộp Chương 3. Hình chóp Chương 4. Hình cầu Chương 5. Hình trụ Chương 6. Hình nón Chương 7. Các bài toán về khoảng cách Chương 8. Các bài toán về góc Phần 2. Ứng dụng để giải các đề tuyển sinh đại học [ads] Xem thêm : + Tài liệu chuyên Toán – Hình học 11 + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (Tài liệu cùng tác giả)