Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 lần 2 năm 2019 - 2020 cụm trường THPT Thanh Chương - Nghệ An

Nhằm chuẩn bị cho kỳ thi chọn học sinh giỏi môn Toán 11 cấp tỉnh do sở Giáo dục và Đào tạo Nghệ An tổ chức, vừa qua, cụm các trường THPT trên địa bàn huyện Thanh Chương, tỉnh Nghệ An đã tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 11 năm học 2019 – 2020 lần thứ hai. Đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An gồm có 06 bài toán tự luận, đề thi có 01 trang, học sinh làm bài trong 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG Toán 11 lần 2 năm 2019 – 2020 cụm trường THPT Thanh Chương – Nghệ An : + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A(2;5) và H là hình chiếu vuông góc của A lên cạnh BC. Gọi I, J(2;-1) và K(6;1) lần lượt là tâm đường nội tiếp của tam giác ABC, ABH, ACH. Chứng minh I là trực tâm của tam giác AJK và tìm tọa độ các đỉnh B, C. [ads] + Cho tứ diện đều ABCD có trọng tâm G, cạnh AB = a; O là tâm của tam giác BCD và M là điểm bất kỳ thuộc mặt phẳng (BCD). Gọi H, K, L lần lượt là hình chiếu vuông góc của M lên các mặt phẳng (ACD), (ABD), (ABC). Mặt phẳng (P) bất kỳ đi qua trọng tâm G, cắt các cạnh AB, AC, AD lần lượt tại B’, C’,  D’. Chứng minh AB/AB’ + AC/AC’ + AD/AD’ = 4. Chứng minh đường thẳng GM luôn đi qua trọng tâm E của tam giác HKL. + Cho đa giác đều có 60 đỉnh. Hỏi có bao nhiêu tam giác có 3 cạnh là đường chéo của đa giác đó?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 11 năm 2023 - 2024 trường THPT Tiên Lãng - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT năm học 2023 – 2024 trường THPT Tiên Lãng, thành phố Hải Phòng; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 11 năm 2023 – 2024 trường THPT Tiên Lãng – Hải Phòng : + Trong một hộp kín đựng 2024 tấm thẻ như nhau được đánh số từ 1 đến 2024. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. + Trong mặt phẳng với hệ trục toạ độ Oxy cho hình vuông ABCD tâm I. Gọi M N J lần lượt là trung điểm các đoạn thẳng AI CD BN. Biết phương trình đường thẳng MJ là 2 7 0 y và N 56. Biết đỉnh C có hoành độ lớn hơn 3. Tìm tọa độ đỉnh C của hình vuông ABCD. + Cho hàm số 3 2 x y x có đồ thị C. Chứng minh rằng đường thẳng 1 2 d y x m luôn cắt đồ thị C tại hai điểm A B phân biệt. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB.