Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi hết học kỳ 1 Toán 10 năm 2018 - 2019 trường THPT Nguyễn Huệ - Hải Phòng

Đề thi hết học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Huệ – Hải Phòng mã đề 02 gồm 20 câu trắc nghiệm khách quan và 5 bài toán tự luận, tỉ lệ điểm phần trắc nghiệm : tự luận là 4:6, học sinh có 90 phút để làm bài, với hình thức thi này, giáo viên vừa có thể kiểm tra kiến thức một cách toàn diện, vừa có thể đánh giá được khả năng tư duy logic của học sinh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi hết học kỳ 1 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Huệ – Hải Phòng : + Một cửa hàng bán áo sơ mi, quần âu nam và váy nữ. Ngày thứ nhất bán được 12 áo, 21 quần và 18 váy, doanh thu 5.349.000 đồng. Ngày thứ hai bán được 16 áo, 24 quần và 12 váy, doanh thu là 5.600.000 đồng. Ngày thứ ba bán được 24 áo, 15 quần và 12 váy, doanh thu 5.259.000 đồng. Hỏi giá bán mỗi áo, mỗi quần và mỗi váy là bao nhiêu? [ads] + Mệnh đề nào sau đây sai? A. Hai vectơ có độ dài bằng nhau thì bằng nhau. B. Hai vectơ được gọi là đối nhau nếu chúng ngược hướng và cùng độ dài. C. Hai vectơ đối nhau thì có độ dài bằng nhau. D. Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau. + Cho hàm số y = ax + b (a ≠ 0). Biết đồ thị hàm số đi qua 2 điểm A(1;4); B(2;5). Tìm a; b, từ đó suy ra hàm số.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập một số đề thi học kì 1 Toán 10 năm 2020 - 2021 - Bùi Đình Thông
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Bùi Đình Thông, tuyển tập một số đề thi học kì 1 Toán 10 năm học 2020 – 2021, giúp học sinh khối 10 ôn tập để chuẩn bị cho kỳ thi học kì 1 Toán 10 sắp tới.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Nguyễn Công Trứ - TP HCM
Sáng thứ Bảy ngày 26 tháng 12 năm 2020, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán 10 giai đoạn cuối học kỳ 1 năm học 2020 – 2021. Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 08 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Để lập đường dây cao thế từ vị trí A đến vị trí B, ta phải tránh một ngọn núi nên ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10 km rồi nối từ vị trí C thẳng đến vị trí B dài 8km. Biết góc tạo bởi hai đoạn dây AC và CB là 120 độ. Hỏi so với việc nối thẳng từ A đến B người ta tốn thêm bao nhiêu km dây? + Trong mặt phằng tọa độ Oxy, cho ba điểm A(-1;4), B(2;5), C(3;-8). a) Chứng minh tam giác ABC vuông tại A. Suy ra tâm đường tròn ngoại tiếp tam giác ABC. b) Tính diện tích tam giác ABC. c) Tìm điểm D thuộc Oy có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Tìm m để phương trình (x + 2)(x2 + 2x + m) = 0 có ba nghiệm âm phân biệt.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Phan Ngọc Hiển - Cà Mau
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 134 gồm có 02 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu (4,0 điểm), phần tự luận gồm 05 câu (6,0 điểm), thời gian làm bài 90 phút, kỳ thi được tổ chức vào thứ Năm ngày 24 tháng 12 năm 2020, đề thi có đáp án mã đề 134, 215, 315, 418. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong các câu sau, câu nào không phải là mệnh đề? A. Bạn có thường đi du lịch vào kì nghỉ hè không? B. Hà Nội là thủ đô của Việt Nam. C. 2 là số nguyên tố chẵn. D. Một năm có 12 tháng. + Trong mặt phẳng Oxy, cho tam giác ABC với A(2;4); B(-3;2); C(5;1). a. Tìm toạ độ trọng tâm G của tam giác ABC. b. Tìm tọa độ điểm D sao cho ABCD là hình bình hành. + Cho tam giác ABC. Gọi M là một điểm trên cạnh BC sao cho MB = 4MC. Khi đó?
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 - 2021 trường chuyên Nguyễn Huệ - Hà Nội
Đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.