Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Sóc Trăng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; kỳ thi được diễn ra vào ngày 29 và 30 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Với số thực a, xét dãy số (un) xác định bởi. a) Chứng minh rằng với mọi số a hữu tỷ, các số hạng của dãy số (un) luôn xác định. b) Với a thuộc [0;1), chứng minh rằng dãy số (vn) xác định bởi vn = n2un với mọi n = 1; 2; … luôn có giới hạn hữu hạn, tìm giới hạn đó. + Cho bảng ô vuông 12 × 12 được chia thành 144 ô phân biệt. Một hình chữ Z (nằm dọc hoặc nằm ngang, gồm 4 ô vuông) được tạo thành từ bảng 3 × 2 hoặc 2 × 3 cắt bỏ đi hai ô ở góc đối diện như các hình bên dưới. a) Người ta muốn tô màu mỗi ô của bảng 12 × 12 ở trên bởi 2 màu xanh, đỏ sao cho trong mỗi hình chữ Z bất kỳ, luôn có đúng 2 ô xanh và 2 ô đỏ. Chứng minh rằng nếu trên cột 1 có hai ô liên tiếp được tô đỏ thì toàn bộ các ô ở cột 12 đều được tô xanh. b) Tính số cách điền các số từ 1; 2; 3; …; 144 lên bảng và mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, số lượng số chẵn bằng số lượng số lẻ. c) Hỏi có tồn tại hay không cách điền số các số từ 1; 2; 3; …; 144 lên bảng, mỗi số điền cho đúng một ô sao cho với mỗi hình chữ Z có trong bảng, tổng các số trên đó đều chia hết cho 3? + Xét tam giác ABC nhọn, không cân có AB < AC nội tiếp trong đường tròn (O) với B, C cố định và A thay đổi trên (O). Các đường cao AD, BE, CF đồng quy tại H. Gọi M là trung điểm của BC. Lấy I đối xứng với A qua EF và đường tròn ngoại tiếp tam giác IMO cắt lại AM tại L. a) Chứng minh rằng L luôn thuộc một đường tròn cố định khi A di động trên (O). b) Đường tròn ngoại tiếp tam giác AHC cắt lại BC tại R, EF cắt BC tại T, AR cắt DE tại G. Chứng minh rằng nếu G là trung điểm của đoạn thẳng DE thì F là trung điểm của đoạn thẳng ET.

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi thành phố môn Toán năm 2022 2023 sở GD ĐT Hải Phòng
Nội dung Đề chọn học sinh giỏi thành phố môn Toán năm 2022 2023 sở GD ĐT Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp thành phố và chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; kỳ thi được diễn ra vào thứ Ba ngày 20 tháng 09 năm 2022. Trích dẫn đề chọn học sinh giỏi thành phố môn Toán năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho tam giác ABC nhọn, AB < BC < CA, trọng tâm G, các đường cao AD, BE, CF đồng quy tại H (D, E, F lần lượt nằm trên BC, CA, AB). a) Đường tròn (BHC) cắt đường tròn đường kính AH tại T khác H. Chứng minh rằng A, T, G thẳng hàng. b) Các điểm I, J, K lần lượt trên các đường thẳng BC, CA, AB sao cho HI, HJ, HK tương ứng vuông góc với AG, BG, CG. Chứng minh rằng các đường tròn (AGD), (BGE), (CGF) cùng đi qua một điểm L khác G và I, J, K, L thẳng hàng. + Chứng minh rằng phương trình (x2 + 2y2)2 – 2(z2 + 2t2)2 = 1 có vô hạn nghiệm tự nhiên. + Xâu tam phân độ dài n có dạng X = a1a2…an với ak thuộc {0;1;2} với mọi k = 1..n. Một xâu con liên tiếp bằng nhau cực đại của X có dạng Y = aiai+1…aj với 1 =< i =< j =< n mà ai = ai+1 = … = aj, ngoài ra ai-1 khác ai (nếu i >= 2) và aj khác aj+1 (nếu j =< n – 1). Ví dụ xâu 1000211 có các câu con liên tiếp bằng nhau cực đại là 1, 000, 2 và 11. a) Gọi An là tập tất cả các xâu tam phân độ dài n mà các xâu con liên tiếp bằng nhau cực đại đều có độ dài lẻ. Chứng minh rằng |A2023| = 2|A2022| + |A2021|. b) Gọi Bn là tập tất cả các câu tam phân độ dài n mà 0 và 2 không bao giờ đứng cạnh nhau. Chúng minh rằng |B2023| = |A2023| + |A2022|/3.
Đề chọn đội tuyển Toán năm 2022 2023 trường THPT chuyên Trần Phú Hải Phòng
Nội dung Đề chọn đội tuyển Toán năm 2022 2023 trường THPT chuyên Trần Phú Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi cấp trường môn Toán năm học 2022 – 2023 trường THPT chuyên Trần Phú, thành phố Hải Phòng. Trích dẫn đề chọn đội tuyển Toán năm 2022 – 2023 trường THPT chuyên Trần Phú – Hải Phòng : + Cho tam giác ABC nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Các điển K, L thay đổi lần lượt trên các cạnh AB, AC sao cho KHL = BAC. M, N theo thứ tự là điểm đối xứng của K, L qua trung điểm AB, AC. Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định. + Cho n số nguyên dương đôi một phân biệt a1; a2; …; an. Chứng minh rằng với mọi i thuộc {1; 2; …; n}, tồn tại một số nguyên dương b sao cho bai là luỹ thừa của số nguyên dương với số mũ lớn hơn 1. + 16 học sinh cùng tham gia một bài kiểm tra ngắn, gồm 3 câu hỏi dưới dạng trắc nghiệm. Mỗi câu hỏi học sinh phải chọn đúng một trong bốn phương án A, B, C hoặc D. Biết rằng hai học sinh bất kỳ có tối đa 1 câu hỏi mà họ lựa chọn cùng 1 phương án. Tìm giá trị lớn nhất của m.
Đề chọn đội tuyển Toán thi HSG thành phố năm 2023 trường chuyên Nguyễn Huệ Hà Nội
Nội dung Đề chọn đội tuyển Toán thi HSG thành phố năm 2023 trường chuyên Nguyễn Huệ Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp thành phố môn Toán năm học 2022 – 2023 trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội. Trích dẫn đề chọn đội tuyển Toán thi HSG thành phố năm 2023 trường chuyên Nguyễn Huệ – Hà Nội : + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = mx3 – 3mx2 + (2m + 1)x + 3 – m có hai điểm cực trị A và B sao cho khoảng cách từ điểm I(1/2;15/4) đến đường thẳng AB đạt giá trị lớn nhất. + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau lập thành từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn có đúng 2 chữ số chẵn. + Cho hình chóp tứ giác đều S.ABCD có SA = a và ASB =1 5°. 1) Tính khoảng cách giữa hai đường thẳng AB và SC. 2) Gọi Q là trung điểm của cạnh SA. Trên các cạnh SB, SC, SD lần lượt lấy các điểm M, N, P không trùng với các đỉnh của hình chóp. Tìm giá trị nhỏ nhất của tổng AM + MN + NP + PQ theo a.
Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường chuyên Hà Nội Amsterdam
Nội dung Đề chọn học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường chuyên Hà Nội Amsterdam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chọn đội tuyển tham gia kỳ thi học sinh giỏi cấp thành phố môn Toán lớp 12 năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam. Trích dẫn đề chọn học sinh giỏi Toán lớp 12 năm 2022 – 2023 trường chuyên Hà Nội – Amsterdam : + Cho đường cong (C) có phương trình y = x3 – 3×2 + 2x – 2022. Với mỗi điểm M thuộc (C), gọi dM là tiếp tuyến của đường cong (C) tại M. Trên (C) lấy điểm M1 có hoành độ xM1 = 2022. Từ điểm M1 ta xây dựng các điểm M2, M3, …, Mn theo quy tắc: điểm Mi+1 (i = 1, 2, …, n – 1 với n thuộc N, n >= 2) là điểm chung thứ hai của dMi (dMi là tiếp tuyến của đường cong (C) tại điểm Mi) với đường cong (C). Gọi xM2, xM3,…, XMn theo thứ tự là hoành độ của các điểm M2, M3, …, Mn. Tìm giá trị nhỏ nhất của n để (f(xMn) + xMn + 2021) chia hết cho 2^2022. + Cho hình lập phương ABCD.A’B’C’D’. Trên các đoạn thẳng BD, AB’ lần lượt lấy các điểm M, N không trùng với các đỉnh của hình lập phương sao cho BM = B’N. Gọi a, b theo thứ tự là số đo góc tạo bởi đường thẳng MN với các đường thẳng BD, AB’. a) Chứng minh rằng cos2a + cos2b = 1/2. b) Xác định vị trí của các điểm M, N sao cho độ dài đoạn thẳng MN ngắn nhất. Khi đó MN có phải đoạn vuông góc chung của hai đường thẳng BD và AB’ không? c) Giả sử các điểm H, K, L (khác điểm A) theo thứ tự di động trên các tia AB, AD, AA’ thỏa mãn. Chứng minh rằng mặt phẳng (HKL) luôn đi qua một điểm cố định khi H, K, L di động thỏa mãn điều kiện trên. + Một kỳ thi học sinh giỏi được diễn ra trong 2 ngày. Điểm đánh giá mỗi ngày dùng k (k > 2) giá trị khác nhau (chẳng hạn với k = 2 thì đánh giá là “đạt” (tức là 1) hoặc “không đạt” (tức là 0); với k = 8 thì điểm số dùng để đánh giá là 0; 1; 2; 3; 4; 5; 6; 7). Hãy xác định số nhiều nhất các học sinh dự thi sao cho có thể xảy ra trường hợp là trong k học sinh tùy ý, luôn có một ngày thi mà kết quả của k học sinh này đôi một khác nhau.