Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phân thức đại số

Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân thức đại số, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Tìm điều kiện để phân thức có nghĩa. Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng A/B với A và B là các đa thức, B khác đa thức 0. Dạng 2 . Chứng minh một phân thức luôn có nghĩa. Bước 1. Lựa chọn 1 trong 3 cách biến đổi thường dùng sau: + Cách 1. Biến đổi vế trái thành vế phải. + Cách 2. Biến đổi vế phải thành vế trái. + Cách 3. Biến đổi đồng thời hai vế. Bước 2. Phân tích tử thức và mẫu thức thành nhân tử. Bước 3. Rút gọn bằng cách triệt tiêu nhân từ chung và sử dụng định nghĩa hai phân thức bằng nhau nếu cần, từ đó suy ra điều phải chứng minh. Dạng 3 . Tìm đa thức trong đẳng thức. Bước 1. Phân tích tử thức và mẫu thức thành nhân tử ở hai vế. Bước 2. Triệt tiêu các nhân tử chung và rút ra đa thức cần tìm. Dạng 4 . Tìm x để giá trị phân thức bằng 0. Đặt điều kiện cho mẫu khác 0, rút ra điều kiện của x. Nhân mẫu thức với 0 vế phải để triệt tiêu mẫu. Cho tử bằng 0 để tìm giá trị của x so sánh với điều kiện kết luận giá trị của x. Dạng 5 . Chứng minh đẳng thức có điều kiện. Bước 1. Xuất phát từ điều phải chứng minh, áp dụng tính chất của hai phân thức bằng nhau. Bước 2. Thu gọn biểu thức và dựa vào điều kiện đề bài cho để lập luận.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập chuyên đề tứ giác Nguyễn Tất Thu
Nội dung Lý thuyết và bài tập chuyên đề tứ giác Nguyễn Tất Thu Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề tứ giác của thầy Nguyễn Tất Thu Lý thuyết và bài tập chuyên đề tứ giác của thầy Nguyễn Tất Thu Tài liệu này gồm 32 trang, được biên soạn bởi thầy giáo Nguyễn Tất Thu, chuyên tập trung vào lý thuyết và bài tập chuyên đề tứ giác. Được thiết kế nhằm hỗ trợ học sinh hiểu rõ hơn về chương trình Hình học 8 chương 1, bao gồm những nội dung sau: Bài 1: Tứ giác Tứ giác Tứ giác lồi Bài 2: Hình thang Hình thang Hình thang cân Đường trung bình của tam giác Đường trung bình của hình thang Bài 3: Hình bình hành Định nghĩa Tính chất Dấu hiệu nhận biết Bài 4: Hình chữ nhật Định nghĩa Tính chất Bài 5: Hình thoi Định nghĩa Tính chất Dấu hiệu nhận biết Bài 6: Hình vuông Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về tứ giác và các hình khối khác, từ đó cải thiện kỹ năng giải bài tập và hiểu rõ hơn về các vấn đề trong Hình học.
Tài liệu tự học lớp 8 môn Toán Nguyễn Chín Em
Nội dung Tài liệu tự học lớp 8 môn Toán Nguyễn Chín Em Bản PDF - Nội dung bài viết Tài liệu học tập Toán lớp 8: Sự cần thiết trong giai đoạn học tập tại nhà Tài liệu học tập Toán lớp 8: Sự cần thiết trong giai đoạn học tập tại nhà Trong thời gian học sinh lớp 8 phải ở nhà do tình hình dịch bệnh Covid-19, việc tự học trở thành một phần quan trọng để giữ cho kiến thức không bị gián đoạn. Để hỗ trợ các em trong việc tự học Toán lớp 8 tại nhà, Sytu đã biên soạn tài liệu học tập Toán lớp 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm. Tài liệu này bao gồm 483 trang với đầy đủ kiến thức và hướng dẫn giải bài tập về Đại số và Hình học. Đầu tiên, tài liệu bắt đầu với phần Đại số, bao gồm chương về phép nhân và phép chia đa thức, phân thức đại số, phương trình bậc nhất, bất phương trình bậc nhất, các phương pháp chứng minh bất đẳng thức, và cách tìm giá trị cực trị của một biểu thức. Sau đó, phần Hình học bao gồm các chương về từ giác, đa giác, diện tích đa giác, tam giác đồng dạng, hình lăng trụ đứng, mặt phẳng trong không gian, quan hệ song song và các bài toán cực trị hình học. Tài liệu này không chỉ cung cấp kiến thức mà còn hướng dẫn cách giải bài tập một cách chi tiết và dễ hiểu. Điều này giúp học sinh tự tin tự học tại nhà mà không cần sự hướng dẫn của giáo viên. Với cách biên soạn và sắp xếp rõ ràng, tài liệu tự học Toán lớp 8 của Nguyễn Chín Em sẽ giúp học sinh lớp 8 nắm vững kiến thức và hoàn thiện kỹ năng giải toán.