Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa kì 1 Toán 9 năm 2021 - 2022 trường THCS Phúc Đồng - Hà Nội

Đề kiểm tra giữa kì 1 Toán 9 năm 2021 – 2022 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 12 tháng 11 năm 2021, đề thi có lời giải chi tiết và thang chấm điểm. I. MỤC TIÊU 1. Kiến thức: – Đại số: Kiểm tra học sinh kiến thức về căn thức bậc hai và các phép biến đổi biểu thức chứa căn bậc hai, rút gọn biểu thức chứa căn thức bậc hai. Đánh giá kĩ năng áp dụng kiến thức về căn thức bậc hai; các phép tính nhân, chia với căn thức bậc hai; các quy tắc biến đổi đơn giản biểu thức chứa căn bậc hai vào các dạng toán: thực hiện phép tính, tìm x, dạng toán tổng hợp. – Hình học: Kiểm tra kiến thức về hệ thức lượng trong tam giác vuông. Đánh giá kĩ năng áp dụng kiến thức quan hệ giữa cạnh và đường cao, quan hệ giữa cạnh và góc, tỉ số lượng giác của góc nhọn để giải quyết các bài toán thực tế và các bài hình tổng hợp. 2. Năng lực: – NL chung: Tính toán, tư duy logic, nghiên cứu và giải quyết vấn đề. – NL chuyên biệt: NL sử dụng ngôn ngữ toán học, NL giải quyết vấn đề thông qua môn Toán. 3. Phẩm chất: Chăm chỉ, trung thực, yêu thích môn học. II. MA TRẬN ĐỀ KIỂM TRA 1. Căn thức bậc hai. Các phép biến đổi đơn giản biểu thức chứa căn bậc hai. 2. Hệ thức lượng trong tam giác vuông. III. BẢNG ĐẶC TẢ IV. ĐỀ KIỂM TRA V. HƯỚNG DẪN CHẤM ĐIỂM

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Phú Diễn - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Phú Diễn, Bắc Từ Liêm, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Phú Diễn – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Phú Diễn – Hà Nội : + Cho hai biểu thức a) Tính giá trị của A khi x = 9. b) Rút gọn biểu thức B. c) So sánh A P B với 1 khi x > 4. + 1) Tính chiều cao cột cờ, biết bóng của cột cờ được chiếu bởi ánh sáng của Mặt Trời xuống đất dài 10,5m và góc tạo bởi tia sáng với mặt đất là 35 45. 2) Cho tam giác ABC vuông tại A AH là đường cao. a) Biết BH cm CH cm 3 6 6 4. Tính AH AC AB và HAC b) Qua B kẻ tia Bx AC. Tia Bx cắt AH tại K. Chứng minh: AH AK BH BC. c) Kẻ KE AC tại E. Chứng minh: 3 5 HE KC với số đo đã cho ở câu a. d) Gọi I giao điểm các đường phân giác các góc trong của tam giác ABC. Gọi r là khoảng cách từ I đến cạnh BC. Chứng minh: 1 3 r AH. + Cho x y là hai số thực dương thỏa mãn x y 3. Tìm giá trị nhỏ nhất của biểu thức 2 2 28 1 P xy 2 x y.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Sơn Đông, Sơn Tây, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của biểu thức A tại x = 25. b) Chứng minh 3 2 x B x. c) Tìm tất cả các giá trị nguyên của x để P AB có giá trị nguyên. + 1) Một cột đèn có bóng trên mặt đất dài 6m. Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 0 40. Tính chiều cao của cột đèn (làm tròn đến mét). 2) Cho tam giác ABC vuông tại A, đường cao AH. Biết AB cm AC cm 3 4. a) Tính AH b) Gọi D E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng. c) Kẻ trung tuyến AM gọi N là giao điểm của AM và DE. Tính tỉ số diện tích của tam giác AND và tam giác ABC. + Tìm các số xyz thỏa mãn đẳng thức.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Thanh Xuân, Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Cho biểu thức a) Tính giá trị của A khi 1 9 a b) Rút gọn B c) Tìm giá trị nguyên của a để B nhận giá trị nguyên. + Tính giá trị biểu thức. + Cho hình bình hành ABCD có 90 A α. Gọi I K lần lượt là hình chiếu của B′, D′ trên đường chéo AC. Gọi M N lần lượt là hình chiếu của C′ trên các đường thẳng A B. a) Chứng minh rằng: Tam giác BCM đồng dạng với tam giác DCN b) Chứng minh rằng: Tam giác CMN đồng dạng với tam giác BCA. Từ đó suy ra MN A C sinα c) Tính diện tích tứ giác ANCM biết BC 6 cm AB 4 cm và α 60. d) Chứng minh: 2 AC AD AN AB AM.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS thị trấn Văn Điển - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS thị trấn Văn Điển, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội : + Với x ≥ 0 và x ≠ 25 cho hai biểu thức. a) Tính A với x = 9. b) Chứng minh biểu thức 5Bx. c) Cho 3BPA. Tìm x nguyên để P có giá trị là một số nguyên. + Cho tam giác ABC vuông tại A, AB = 3 cm, AC = 4 cm. a) Giải tam giác ABC. b) Gọi I là trung điểm của BC vẽ AH BC. Tính AH AI. c) Qua A kẻ đường thẳng xy vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh: 2 4 BC MB NC. d) Gọi K là trung điểm của AH. Chứng minh BKN thẳng hàng. + Giải phương trình: 2x.