Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 11 năm học 2016 - 2017 trường THPT Phan Đình Phùng - Hà Tĩnh

Đề thi HK2 Toán 11 năm học 2016 – 2017 trường THPT Phan Đình Phùng – Hà Tĩnh gồm 35 câu hỏi trắc nghiệm và 2 bài tập tự luận, có đáp án phần và lời giải chi tiết. Trích một số bài toán trong đề: + Trong không gian cho đường thẳng d và điểm O. Có bao nhiêu đường thẳng đi qua d và vuông góc với đường thẳng d? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a. Cạnh bên SA vuông góc với mặt phẳng đáy. Trong các tam giác sau, tam giác nào không phải là tam giác vuông? + Cho hình chóp tứ giác đều S.ABCD có tất cả cạnh đều bằng a. Gọi P , Q lần lượt là trung điểm của BC, SB. Số đo của góc tạo bởi hai đường thẳng SA, PQ bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường Quốc tế Á Châu TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường Quốc tế Á Châu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán lớp 11 năm học 2021 – 2022 trường TH – THCS – THPT Quốc tế Á Châu, thành phố Hồ Chí Minh.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Bùi Thị Xuân TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Bùi Thị Xuân TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán lớp 11 năm học 2021 – 2022 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2021 – 2022 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình 3 2 2 7 5 3 t S t t t trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động (t > 0) và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc của vật tại thời điểm mà vật có vận tốc nhỏ nhất. + Chứng minh phương trình 2 4 2 m m x x mx 4 2 3 0 luôn có nghiệm với mọi giá trị thực của tham số m. + Cho hình vuông ABCD cạnh a. Gọi I, J, K lần lượt là trung điểm các đoạn thẳng AB, BC, CD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại điểm I lấy điểm S sao cho tam giác SAB đều. a) Chứng minh mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD) và tam giác SBC vuông. b) Chứng minh đường thẳng DJ vuông góc với mặt phẳng (SIC). c) Xác định và tính góc giữa đường thẳng SD với mặt phẳng (SAB). d) Tính khoảng cách giữa hai đường thẳng AB và SC theo a.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Lý Thường Kiệt TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Lý Thường Kiệt TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán lớp 11 năm học 2021 – 2022 trường THPT Lý Thường Kiệt, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2021 – 2022 trường THPT Lý Thường Kiệt – TP HCM : + Cho hàm số 2 x y x có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại điểm M(1;1). + Cho đường cong 3 1 1 x C y x. Viết phương trình tiếp tuyến của (C) biết rằng tiếp tuyến song song với đường thẳng d y x 4 1. + Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a; H là trung điểm của AB; SH vuông góc với mặt phẳng (ABCD) 6 2 a SA. a) Chứng minh: SBC SAB. b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c) Gọi M là trung điểm SA. Tính khoảng cách từ điểm M đến mặt phẳng (SCD).
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Tam Phú TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2021 2022 trường THPT Tam Phú TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi cuối học kỳ 2 môn Toán lớp 11 năm học 2021 – 2022 trường THPT Tam Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2021 – 2022 trường THPT Tam Phú – TP HCM : + Tính đạo hàm các hàm số sau? + Viết phương trình tiếp tuyến với đường cong 3 2 C y x x 2 1 tại điểm có hoành độ x0 = −1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a SA a 3 SA ABCD a) Chứng minh: SAC SBD. b) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). c) Gọi I là hình chiếu của A lên SC. Từ I lần lượt vẽ các đường thẳng song song với SB, SD cắt BC, CD tại P, Q. Gọi E là giao điểm của PQ và AB. Tính khoảng cách từ E đến mặt phẳng (SBD).