Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán - Phạm Hoàng Đăng
Tài liệu gồm 63 trang, được biên soạn bởi thầy giáo Phạm Hoàng Đăng, tuyển tập các chuyên đề vận dụng – vận dụng cao (VD – VDC / nâng cao / khó) tổng ôn kỳ thi tốt nghiệp THPT Quốc gia môn Toán, giúp học sinh chinh phục mức điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT môn Toán. Mục lục tài liệu các chuyên đề tổng ôn kỳ thi THPT Quốc gia môn Toán – Phạm Hoàng Đăng: Chuyên đề 1 . KHẢO SÁT HÀM SỐ. A Tìm tham số để hàm số đơn điệu trên K. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. B Giá trị lớn nhất, nhỏ nhất của hàm hợp. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3. Bảng đáp án. C Đơn điệu và cực trị của hàm số hợp. 1 Bài tập mẫu. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. Chuyên đề 2 . Phương trình mũ và lôgarít. A Dạng phương trình cô lập tham số. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. B Bài toán sử dụng hàm đặc trưng. 1 Ví dụ. 2 Bài tập tương tự và phát triển. Chuyên đề 3 . NGUYÊN HÀM – TÍCH PHÂN. A Tích phân hàm số cho bởi nhiều công thức. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. B Tích phân kết hợp: Đổi biến & từng phần.  1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. C Tích phân hàm ẩn. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. D Diện tích hình phẳng và thể tích vật thể tròn xoay. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. Chuyên đề 4 . SỐ PHỨC. A Xác định các thuộc tính của số phức. 1 Ví dụ. 2 Bài tập tương tự và phát triển. B Cực trị của biểu thức chứa mô-đun số phức. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. Chuyên đề 5 . HÌNH HỌC KHÔNG GIAN. A Góc giữa đường thẳng và mặt phẳng. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. B Thể tích có chứa dữ liệu góc.  1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. C Khoảng cách từ điểm đến mặt phẳng.  1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. D Khoảng cách giữa hai đường thẳng chéo nhau.  1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. E Góc giữa hai mặt phẳng. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. F Thể tích khối đa diện liên quan góc, khoảng cách. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. G Bài toán cực trị (thực tế) trong nón trụ cầu.  1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. Chuyên đề 6 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN. A Phương trình mặt phẳng, đường thẳng. 1 Ví dụ. 2 Bài tập tương tự và phát triển. 3 Bảng đáp án. B Cực trị hình học Oxyz. 1 Ví dụ. 2 Bài tập tương tự phát triển. 3 Bảng đáp án.
10 chuyên đề ôn thi THPT QG môn Toán theo mức độ - Phạm Hoàng Điệp
Tài liệu gồm 542 trang, được biên soạn bởi Th.S Phạm Hoàng Điệp, tuyển tập 10 chuyên đề ôn thi THPT QG môn Toán theo mức độ, giúp học sinh lớp 12 tham khảo để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán do Bộ Giáo dục và Đào tạo tổ chức. PHẦN 1. ĐẠI SỐ VÀ GIẢI TÍCH. 1 Tổ hợp – Xác suất. A Kiến thức cần nhớ. 1. Hai quy tắc đếm cơ bản. 2. Hoán vị – Chỉnh hợp – Tổ hợp. 3. Tính xác suất. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 2 Dãy số – Cấp số cộng – Cấp số nhân. A Kiến thức cần nhớ. 1. Cấp số cộng. 2. Cấp số nhân. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3 Hàm số. A Kiến thức cần nhớ. 1. Tính đơn điệu của hàm số. 2. Điểm cực trị của hàm số. 3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. 4. Tiệm cận của đồ thị hàm số. 5. Khảo sát và vẽ đồ thị hàm số. 6. Sự tương giao đồ thị. 7. Đạo hàm của hàm số hợp. 8. Lập bảng biến thiên của hàm số y = f(x) khi biết đồ thị hàm số y = f'(x). 9. Lập bảng biến thiên của hàm số g(x) = f(x) + u(x) khi biết đồ thị hàm số y = f'(x). B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 4 Lô-ga-rít. A Kiến thức cần nhớ. 1. Các công thức thường dùng để giải phương trình – bất phương trình lô-ga-rít. 2. Các công thức thường dùng để giải phương trình – bất phương trình mũ. 3. Hàm số mũ. 4. Hàm số lô-ga-rít. 5. Giới hạn đặc biệt. 6. Đạo hàm. 7. Áp dụng tính đơn điệu. 8. Lãi đơn. 9. Lãi kép. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 5 Nguyên hàm – Tích phân – Ứng dụng. A Kiến thức cần nhớ. 1. Định nghĩa nguyên hàm. 2. Tính chất nguyên hàm. 3. Bảng nguyên hàm của một số hàm thường gặp. 4. Một số phương pháp tính nguyên hàm. 5. Nguyên hàm của hàm ẩn. 6. Định nghĩa tích phân. 7. Tính chất tích phân. 8. Phương pháp đổi biến số. 9. Phương pháp tích phân từng phần. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 6 Số phức. A Kiến thức cần nhớ. 1. Định nghĩa. 2. Số phức liên hợp. 3. Biễu diễn hình học. 4. Môđun của số phức. 5. Các phép toán trên tập số phức. 6. Căn bậc hai của số thực âm. 7. Giải phương trình bặc hai trên tập số. 8. Điểm biểu diễn số phức. 9. Nhận xét. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. PHẦN 2. HÌNH HỌC. 1 Góc và khoảng cách trong không gian. A Kiến thức cần nhớ. 1. Góc giữa hai đường thẳng. 2. Góc giữa đường thẳng và mặt phẳng. 3. Góc giữa hai mặt phẳng. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 2 Khối đa diện. A Kiến thức cần nhớ. 1. Thể tích khối chóp. 2. Thể tích lăng trụ. 3. Tỉ số thể tích. 4. Các diện tích đa giác thường gặp. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 3 Khối tròn xoay. A Kiến thức cần nhớ. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4. 4 Hình học không gian Oxyz. A Kiến thức cần nhớ. 1. Tọa độ vec-tơ và tọa độ điểm. 2. Đường thẳng. 3. Mặt phẳng. B Bài tập mẫu. C Bài tập tương tự và phát triển. 1. Mức độ 1. 2. Mức độ 2. 3. Mức độ 3. 4. Mức độ 4.
Tuyển tập 200 bài toán VD - VDC hay nhất ôn thi THPT 2020 - 2021 môn Toán
Tài liệu gồm 188 trang, được biên soạn bởi cô giáo Ngọc Huyền, tuyển tập 200 bài toán mức độ vận dụng – vận dụng cao (VD – VDC) hay nhất ôn thi tốt nghiệp THPT năm học 2020 – 2021 môn Toán, có đáp án và lời giải chi tiết; đây là món quà tác giả gửi tặng các em học sinh lớp 12 nhân dịp Giao Thừa chuyển sang năm mới Tân Sửu. Mục lục tài liệu tuyển tập 200 bài toán VD – VDC hay nhất ôn thi THPT 2020 – 2021 môn Toán: A. Đề bài I. Hàm số (Trang 3). II. Mũ – logarit (Trang 11). III. Tích phân (Trang 13). IV. Số phức (Trang 16). V. Thể tích khối đa diện (Trang 18). VI. Khối tròn xoay (Trang 23). VII. Hình tọa độ Oxyz (Trang 27). VIII. Tổ hợp – Xác suất | Giới hạn | Cấp số (Trang 34). B. Hướng dẫn giải chi tiết I. Hàm số (Trang 36). II. Mũ – logarit (Trang 74). III. Tích phân (Trang 83). IV. Số phức (Trang 95). V. Thể tích khối đa diện (Trang 109). VI. Khối tròn xoay (Trang 135). VII. Hình tọa độ Oxyz (Trang 147). VIII. Tổ hợp – Xác suất | Giới hạn | Cấp số (Trang 177).
Tổng hợp lý thuyết Toán THPT - Nguyễn Trọng Đoàn
Tài liệu gồm 70 trang, được biên soạn bởi thầy giáo Nguyễn Trọng Đoàn, tổng hợp lý thuyết Toán THPT, giúp học sinh tra cứu khi học chương trình Toán 10, Toán 11, Toán 12 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu tổng hợp lý thuyết Toán THPT – Nguyễn Trọng Đoàn: I. LÍ THUYẾT LỚP 10 1. Đại số 10. Chương 1. Mệnh đề – tập hợp. Chương 2. Hàm số bậc nhất và hàm số bậc hai. Chương 3. Phương trình và hệ phương trình. Chương 4. Bất đẳng thức. Chương 6. Góc lượng giác và công thức lượng giác. 2. Hình học 10. Chương 1. Vec tơ. Chương 2. Tích vô hướng hai vec tơ và ứng dụng. Chương 3. Phương pháp tọa độ trong mặt phẳng. II. LÍ THUYẾT LỚP 11 1. Đại số và Giải tích 11. Chương 1. Hàm số lượng giác và phương trình lượng giác. Chương 2. Tổ hợp – xác suất. Chương 3. Dãy số – cấp số cộng – cấp số nhân. Chương 4. Giới hạn. Chương 5. Đạo hàm. 2. Hình học 11. Chương 1. Phép biến hình. Chương 2. Quan hệ song song trong không gian. Chương 3. Quan hệ vuông góc trong không gian. III. LÍ THUYẾT LỚP 12 1. Giải tích 12. Chương 1. Ứng dụng đạo hàm và khảo sát hàm số. Chương 2. Hàm số lũy thừa – mũ – logarit. Chương 3. Nguyên hàm – tích phân. Chương 4. Số phức. 2. Hình học 12. Chương 1. Khối đa diện và thể tích khối đa diện. Chương 2. Mặt trụ – mặt nón – mặt cầu. Chương 3. Phương pháp tọa độ trong không gian.