Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2023 trường THCS Quỳnh Lập Nghệ An

Nội dung Đề thi thử Toán vào lần 2 năm 2023 trường THCS Quỳnh Lập Nghệ An Bản PDF Đề thi thử Toán vào lớp 10 lần 2 năm 2023 trường THCS Quỳnh Lập – Nghệ An đang được Sytu giới thiệu đến các thầy cô giáo và các em học sinh lớp 9. Đề thi bao gồm các câu hỏi và bài toán có đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp các em ôn tập hiệu quả.

Một trong số đó là bài toán về việc tính toán sản phẩm cần sản xuất trong một phân xưởng theo kế hoạch. Với thông tin rằng phân xưởng đã hoàn thành công việc sớm hơn 3 ngày do sản xuất vượt mức, hỏi mỗi ngày phân xưởng cần phải sản xuất bao nhiêu sản phẩm để đạt được kế hoạch ban đầu?

Ngoài ra, đề thi cũng đưa ra bài toán về tính thể tích của một chai dung dịch rửa tay theo hình trụ. Bạn cần tính toán thể tích của chai dung dịch dựa trên thông tin về chiều cao và đường kính đáy của chai.

Cuối cùng, đề thi còn đưa ra bài toán về tam giác vuông cân và đường tròn nội tiếp. Bạn cần chứng minh các mệnh đề liên quan đến các điểm và đường thẳng trong bài toán để giải quyết vấn đề đề ra.

Đề thi cung cấp cho các em cơ hội rèn luyện kỹ năng giải bài toán, suy luận logic và tính toán. Hy vọng rằng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Sơn La, tỉnh Sơn La; đề thi dành cho thí sinh thi vào các lớp 10 chuyên Toán và chuyên Tin học; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Sơn La : + Tìm giá trị của tham số k để đường thẳng (d1): y = -x + 2 cắt đường thẳng (d2): y = 2x + 3 – k tại một điểm nằm trên trục hoành. + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – m + 1 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn |x1 – x2| > 3. + Cho tam giác ABC có ba góc nhọn (AB > AC) nội tiếp đường tròn (O; R). Đường cao AH của tam giác ABC cắt đường tròn (O; R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M. a) Chứng minh tứ giác BMHD nội tiếp được đường tròn và DA là tia phân giác của góc MDC. b) Từ D kẻ DN vuông góc với đường thẳng AC tại N. Chứng minh ba điểm M, H, N thẳng hàng. c) Cho P = AB2 + AC2 + CD2 + BD2. Tính giá trị biểu thức P theo R.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hưng Yên; đề thi mã đề 117 gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giám thị phát đề).
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Một người đi xe máy từ địa điểm A đến địa điểm B trên quãng đường 100 km. Khi từ B về A người đó đã giảm vận tốc 10 km/h so với lúc đi nên thời gian lúc về nhiều hơn thời gian lúc đi là 30 phút. Tính vận tốc của người đó lúc đi. + Từ điểm M nằm bên ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB của (O) (A và B là hai tiếp điểm). Một đường thẳng qua M và không đi qua O cắt (O) tại hai điểm C và D (C nằm giữa M, D và A thuộc cung nhỏ CD). a) Chứng minh tứ giác AMBO nội tiếp. b) Chứng minh MA2 = MC.MD. c) Gọi I là giao điểm của AB và MO. Chứng minh tứ giác CDOI nội tiếp. d) Kẻ đường thẳng qua D vuông góc với MO cắt (O) tại E khác D. Chứng minh ba điểm C, I, E thẳng hàng. + Với các số thực x, y, z thỏa mãn x >= 1, y >= 1, z >= 1 và x2 + 2y2 + 3z2 = 15. Tìm giá trị nhỏ nhất của biểu thức P = x + y + z.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn : + Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0 (1). 1. Giải phương trình (1) khi m = 0. 2. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt x1 và x2 với mọi m. Tìm tất cả các giá trị của m thỏa mãn: x1 + x2 – 2x1x2 = 1. + Giải các phương trình và hệ phương trình sau. + Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O).