Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát đầu năm Toán 12 năm 2019 - 2020 trường Yên Phong 2 - Bắc Ninh

giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi khảo sát chất lượng đầu năm học môn Toán lớp 12 năm học 2019 – 2020 trường THPT Yên Phong số 2, tỉnh Bắc Ninh, kỳ thi nhằm kiểm tra lại các kiến thức Toán 11 mà học sinh đã được học, nhằm tạo tiền đề trước khi các em bắt đầu tìm hiểu những nội dung kiến thức mới trong chương trình môn Toán 12. Đề khảo sát đầu năm Toán 12 năm 2019 – 2020 trường Yên Phong 2 – Bắc Ninh có mã đề 132, đề thi gồm 6 trang, đề được biên soạn theo dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, năm nay các em cũng sẽ bước vào năm học cuối cùng ở cấp bậc THPT trước khi bước vào kỳ thi THPT Quốc gia môn Toán, do đó việc làm quen với đề toán dạng trắc nghiệm là cần thiết, đề thi có đáp án các mã đề. [ads] Trích dẫn đề khảo sát đầu năm Toán 12 năm 2019 – 2020 trường Yên Phong 2 – Bắc Ninh : + Từ một tập gồm 10 câu hỏi, trong đó có 4 câu lí thuyết và 6 câu bài tập, người ta tạo thành các đề thi. Biết rằng một đề thi phải gồm 3 câu hỏi trong đó có ít nhất một câu lí thuyết và 1 câu bài tập. Hỏi có thể tạo được bao nhiêu đề khác nhau? + Trong các mệnh đề dưới đây, mệnh đề nào sai? A. Hình chóp tứ giác đều có các cạnh bên bằng nhau. B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tứ giác đều có đáy là hình vuông. D. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh lên đáy trùng với tâm của đáy. + Người ta sử dụng 7 cuốn sách Toán, 8 cuốn sách Vật lí, 9 cuốn sách Hóa học (các cuốn sách cùng loại giống nhau) để làm phần thưởng cho 12 học sinh, mỗi học sinh được 2 cuốn sách khác loại. Trong số 12 học sinh trên có hai bạn Tâm và Huy. Tính xác suất để hai bạn Tâm và Huy có phần thưởng giống nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần 2 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội (mã đề 275). Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong không gian Oxyz, cho biết có hai mặt cầu có tâm nằm trên đường thẳng 1 2 2 1 1 x y z d tiếp xúc đồng thời với hai mặt phẳng 2 2 1 0 x y z và 2 3 6 2 0 x y z. Gọi R1 và R2 (R R 1 2) là bán kính của hai mặt cầu đó. Tỉ số 1 2 R R bằng? + Cho hình chóp S ABCD có đáy ABCD là hình bình hành có diện tích bằng 2 12a; khoảng cách từ S tới mặt phẳng ABCD bằng 4a. Gọi N là trọng tâm tam giác ACD; gọi G và T lần lượt là trung điểm các cạnh SB và SC. Mặt phẳng NGT chia khối chóp thành hai khối đa diện. Thể tích của khối đa diện chứa đỉnh S bằng? + Cho hàm số y f x có đạo hàm liên tục trên và có đồ thị hàm số y f x như hình vẽ bên. Biết f b 0 hỏi đồ thị hàm số y f x cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên - Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên – Đồng Nai (mã đề GỐC); đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường THPT Trấn Biên – Đồng Nai : + Trong không gian Oxyz, cho mặt cầu 2 22 Sx y z 1 2 3 27. Gọi (α) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (α) 0 ax by z c khi đó abc bằng? + Một trang trại đang dùng hai bể nước hình trụ có cùng chiều cao; bán kính đáy lần lượt bằng 1,6m và 1,8 m. Trang trại làm một bể nước mới hình trụ, có cùng chiều cao và thể tích bằng tổng thể tích của hai bể nước trên; biết ba hình trụ trên là phần chứa nước của mỗi bể. Bán kính đáy của bể nước mới gần nhất với kết quả nào dưới đây? + Trong khuôn viên một trường đại học có 5000 sinh viên, một sinh viên vừa trở về sau kì nghỉ và bị nhiễm virus cúm truyền nhiễm kéo dài. Sau đó lây lan cho các sinh viên của trường và sự lây lan này được mô hình hóa bởi công thức 0 8 5000 1 4999e t y ∀ t 0. Trong đó y là tổng số học sinh bị nhiễm sau t ngày. Các trường đại học sẽ cho các lớp học nghỉ khi có nhiều hơn hoặc bằng 40% số sinh viên bị lây nhiễm. Sau ít nhất bao nhiêu ngày thì trường cho các lớp nghỉ học?
Đề thi thử THPT Quốc gia 2022 môn Toán lần 4 trường Lương Thế Vinh - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2021 – 2022 môn Toán lần 4 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội (mã đề 101). Trích dẫn đề thi thử THPT Quốc gia 2022 môn Toán lần 4 trường Lương Thế Vinh – Hà Nội : + Cho hàm số y f x liên tục trên R và có bảng biến thiên như sau: x 1 0 1 y 0 0 0 y 3 2 1. Gọi S là tập các giá trị nguyên của tham số m để bất phương trình 2 2 2 4 6 1 9 5 4 2 f x f x f x f x f x m m nghiệm đúng với mọi x. Tính tổng các phần tử của S. + Cho hình chóp đều S ABCD có cạnh đáy bằng 4a cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? + Cho hai hàm số 4 3 2 y x x x x y x x x m x 6 5 11 6 2 3 có đồ thị lần lượt là C C 1 2. Có bao nhiêu giá trị nguyên m thuộc đoạn [-2022;2022] để C1 cắt C2 tại 4 điểm phân biệt? A. 2022. B. 2023. C. 4044. D. 2021.
Đề thi thử Toán TN THPT 2022 lần 2 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2022 lần 2 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022. Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho mặt cầu 22 2 1 1 2 25 Sx y z và đường thẳng 434 1 22 xyz d. Gọi M abc b 0 là một điểm trên d và MA MB là 2 tiếp tuyến với mặt cầu S vuông góc với d vẽ từ M (A B là các tiếp điểm). Khi diện tích tam giác MAB lớn nhất thì abc bằng? + Cho hai hàm số 432 f x ax bx cx dx e và 3 2 g x qx px rx t các hàm số f x g x có đồ thị như hình vẽ. Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx và y gx bằng 24 và f g 4 4. Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y fx và y gx bằng? + Trên tập hợp các số phức, phương trình 2 2 z m zm 2 1 2 0 (m là tham số thực) có 2 nghiệm 1 2 z z 1 2 z z. Gọi M N lần lượt là các điểm biểu diễn của 1z và 2 z trong mặt phẳng tọa độ Oxy. Có bao nhiêu giá trị nguyên của m để diện tích tam giác?