Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Thiệu Hóa - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2023. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Cho x, y, z là các số thực dương thỏa mãn: x2 + y2 + z2 + 1/x2 + 1/y2 + 1/z2 = 6. Tính giá trị của biểu thức P = x2021 + y2022 + z2023. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho tứ giác ABCD có B = D = 90° và AB > AD, lấy điểm M trên cạnh AB sao cho AM = AD. Đường thẳng DM cắt BC tại N. Gọi H là hình chiếu của D trên AC, K là hình chiếu của C trên AN. Chứng minh rằng: 1. Chứng minh rằng: AM2 = AH.AC. 2. Chứng minh rằng AHM = AMC và tam giác CDN là tam giác cân. 3. Chứng minh rằng : MHN = MCK.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lục Nam - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Nam, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm (20 câu – 06 điểm) kết hợp 70% tự luận (04 câu – 14 điểm), thời gian làm bài 120 phút; kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lục Nam – Bắc Giang : + Chọn đáp án đúng nhất: Cho hai số thực x y thỏa mãn 2 2 2 x y x y xy 2 4 6 1. Giá trị của biểu thức Axy 2022 2023 bằng? + Tam giác ABC vuông tại A có AC = 8 cm, BC = 10 cm. Tia phân giác của góc BAC cắt cạnh BC tại D. Tỉ số diện tích của tam giác ABD và tam giác ACD là? + Cho hình vuông ABCD có 2 đường chéo AC và BD cắt nhau tại O. Trên cạnh BC lấy N (0 < NC < NB), đường thẳng vuông góc với ON tại O cắt AB tại M. Gọi E là giao điểm của AN với DC, gọi K là giao điểm của ON với BE. 1. Chứng minh ∆MON vuông cân. 2. Chứng minh MN // BE. 3. Gọi H là giao điểm của KC và BD. Chứng minh: OB NC CH OH NB KH.
Đề HSG huyện Toán 8 vòng 2 năm 2022 - 2023 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 vòng 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 10 bài toán, thời gian làm bài 150 phút. Trích dẫn Đề HSG huyện Toán 8 vòng 2 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Biết rằng đa thức f(x) khi chia cho x − 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x² + x – 6. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC, lấy điểm M sao cho BM = 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Cho hình vuông ABCD có cạnh bằng a. Trên cạnh AD lấy điểm M sao cho AM = 3MD. Kẻ tia Bx cắt cạnh CD tại I sao cho ABM = MBI. Kẻ tia phân giác của CBI, tia này cắt cạnh CD tại N. a) Chứng minh rằng: MN = AM + NC. b) Tính diện tích tam giác BMN theo a.
Đề học sinh giỏi huyện Toán 8 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho hình chữ nhật ABCD (AB > 2BC), trên cạnh AB lấy điểm M sao cho BC = AM, trên tia CB lấy điểm N sao cho CN = BM, CM cắt AN tại P, trên cạnh CD lấy điểm E sao cho CE = CB. 1) Chứng minh tứ giác AMCE là hình bình hành. 2) Chứng minh các tam giác ADE và ECN bằng nhau. 3) Đường thẳng qua A vuông góc với AE cắt đường thẳng qua N vuông góc với NE tại điểm F. Chứng minh tứ giác AENF là hình vuông. 4) Gọi K là giao điểm của EN với PC, L là giao điểm của EF với AN. Tính tỉ số diện tích của hai tam giác NKL và NEP. + Thí sinh lựa chọn làm một (chỉ một) câu trong hai câu sau: 1) Chứng minh rằng nếu 2n (với n N) là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương. 2) Tìm giá trị nhỏ nhất và giá trị lớn nhất của 2 6 2 3 1 x A x. + Cho biểu thức 3 3 3 3 3 A 1 2 3 … 2022 2023. Tìm số dư khi chia số A cho 3.