Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 300 bài toán bất đẳng thức chọn lọc có lời giải chi tiết

Tài liệu gồm 186 trang, được biên soạn bởi tác giả Trần Minh Quang, tuyển tập 300 bài toán bất đẳng thức chọn lọc có đáp án và lời giải chi tiết. Một số bất đẳng thức trong các đề thi học sinh giỏi, tuyển sinh ĐH – THPT Quốc gia và lớp 10 chuyên Toán. Trong các kì thi học sinh giỏi môn Toán THCS – THPT và các kì thi tuyển sinh lớp 10 chuyên, nội dung về bất đẳng thức và giá trị lớn nhất, nhỏ nhất xuất hiện một cách đều đặn trong các đề thi với các bài toán ngày càng khó hơn. Trong chủ đề này, mình đã tuyển chọn và giới thiệu một số bài toán về bất đẳng thức và giá trị lớn nhất, nhỏ nhất được trích trong các đề thi học sinh giỏi môn Toán cấp tỉnh và các đề thi chuyên Toán các năm gần đây.

Nguồn: toanmath.com

Đọc Sách

Phân dạng và bài tập chuyên đề bất đẳng thức - bất phương trình - Nguyễn Bảo Vương
Tài liệu gồm 302 trang phân dạng và tuyển chọn bài tập chuyên đề bất đẳng thức – bất phương trình, tài liệu do thầy Nguyễn Bảo Vương sưu tầm và biên soạn. Bất đẳng thức + Dạng 1. Sử dụng định nghĩa và tích chất cơ bản + Dạng 2. Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất + Dạng 3. Đặt ẩn phụ trong bất đẳng thức + Dạng 4. Sử dụng bất đẳng thức phụ Đại cương về bất phương trình + Dạng 1. Tìm điều kiện xác định của bất phương trình + Dạng 2. Xác định các bất phương trình tương đương và giải bất phương trình bằng phép biến đổi tương Bất phương trình và hệ bất phương trình bậc nhất hai ẩn + Dạng 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn + Dạng 2. Ứng dụng vào bài toán kinh tế Bất phương trình và hệ bất phương trình bậc nhất một ẩn + Dạng 1. Giải bất phương trình dạng ax + b < 0 + Dạng 2. Giải hệ bất phương trình bậc nhất một ẩn + Dạng 3. Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn [ads] Dấu của nhị thức bậc nhất + Dạng 1. Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất hai ẩn + Dạng 2. Ứng dụng xét dấu của nhị thức bậc nhất hai ẩn vào giải toán Phương trình và bất phương trình quy về bậc hai + Dạng 1. Phương trình và bất phương trình chứa ẩn trong dấu giá trị tuyệt đối + Dạng 2. Phương trình và bất phương trình chứa căn Dấu của tam thức bậc hai + Dạng 1. Xét dấu của biểu thức chứa tam thức bậc hai + Dạng 2. Bài toán chứa tham số liên quan đến tam thức bậc hai luôn mang một dấu Bất phương trình bậc hai + Dạng 1. Giải bất phương trình bậc hai + Dạng 2. Giải hệ bất phương trình bậc hai một ẩn + Dạng 3. Giải bất phương trình tích và bất phương trình chứa ẩn ở mấu thức + Dạng 4. Ứng dụng tam thức bậc hai, bất phương trình bậc hai trong chứng minh bất đẳng thức và tìm giá trị lớn nhất, nhỏ nhất Tổng hợp 336 bài tập trắc nghiệm bất đẳng thức và bất phương trình
Phân dạng và bài tập bất đẳng thức, GTLN - GTNN - Trần Quốc Nghĩa
Tài liệu gồm 58 trang phân dạng và tuyển chọn bài tập bất đẳng thức, GTLN – GTNN (Đại số 10), tài liệu do thầy Trần Quốc Nghĩa biên soạn. Chủ đề 1. BẤT ĐẲNG THỨC + Dạng 1. Chứng minh BĐT dựa vào định nghĩa và tính chất + Dạng 2. Chứng minh BĐT dựa vào BĐT Cauchy (AM-GM) + Dạng 3. Chứng minh BĐT dựa vào BĐT Cauchy Schwarz + Dạng 4. Chứng minh BĐT dựa vào BĐT C.B.S + Dạng 5. Chứng minh BĐT dựa vào tọa độ vectơ + Dạng 6. Bất đẳng thức về giá trị tuyệt đối + Dạng 7. Sử dụng phương pháp làm trội + Dạng 8. Ứng dụng BĐT để giải PT, HPT, BPT Bài tập trắc nghiệm chủ đề 1: Bất đẳng thức [ads] Chủ đề 2. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT + Dạng 1. Dùng tam thức bậc hai + Dạng 2. Dùng BĐT Cauchy + Dạng 3. Dùng BĐT C.B.S + Dạng 4. Dùng BĐT chứa dấu giá trị tuyệt đối + Dạng 5. Dùng tọa độ vectơ Bài tập trắc nghiệm chủ đề 2: GTLN-GTNN BÀI TẬP TỔNG HỢP BÀI TẬP TRẮC NGHIỆM
12 phương pháp chứng minh bất đẳng thức - Lớp 10 chuyên Toán Quảng Bình (2012 - 2015)
Trong môn Toán ở trường THPT, bất đẳng thức ngày càng được quan tâm đúng mức và tỏ ra có sức hấp dẫn mạnh mẽ nhờ vẽ đẹp và tính độc đáo của phương pháp và kỹ thuật giải chúng cũng như yêu cầu cao về tư duy cho người giải. Bất đẳng thức là một trong những dạng toán hay và khó đối với học sinh trong quá trình học tập cũng như trong các kỳ thi, trước hết là kỳ thi đại học mà hầu hết học sinh THPT đều phải vượt qua. Ngoài ra bất đẳng thức cũng là một dạng thường gặp trong các kỳ thi học sinh giỏi toán ở các cấp tỉnh, Quốc gia, Olympic khu vực và Olympic quốc tế. Các bài toán bất đẳng thức không những rèn luyện tư duy sáng tạo, trí thông minh mà còn đem lại say mê và yêu thích môn Toán của người học. Trong đề tài nghiên cứu khoa học này, tập thể lớp 10 Toán trường THPT Chuyên Quảng Bình xin trình bày một số vấn đề về bất đẳng thức, một số phương pháp chứng minh bất đẳng thức. Đề tài gồm các bài viết của các nhóm tác giả được trình bày dưới dạng các chuyên đề. [ads] 1. Bất đẳng thức AM – GM và ứng dụng 2. Bất đẳng thức Minkowski và ứng dụng 3. Bất đẳng thức Holder và ứng dụng 4. Bất đẳng thức Cauchy – Schwarz 5. Bất đẳng thức Chebyshev 6. Bất đẳng thức Muirhead 7. Phương pháp PQR 8. Phương pháp phân tích tổng bình phương S.O.S 9. Sử dụng phương pháp S.O.S trong chứng minh bất đẳng thức 10. Phương pháp dồn biến 11. Sử dụng tiếp tuyến trong việc chứng minh bất đẳng thức 12. Phương pháp nhân tử Lagrange
Phân dạng các bài toán bất đẳng thức và min - max - Mẫn Ngọc Quang
Tài liệu Phân dạng các bài toán bất đẳng thức và min – max của thầy giáo Mẫn Ngọc Quang gồm 160 trang là tuyển tập các bài toán bất đẳng thức và min – max đặc sắc được phân thành 13 dạng khác nhau dựa theo phương pháp giải. §1. Các bất đẳng thức phụ chứng minh bất đẳng thức §2. Bất đẳng thức ba biến đối xứng điểm rơi đẹp §3. Các bất đẳng thức phụ quen thuộc §4. Bất đẳng thức ba biến không đối xứng §5. Bất đẳng thức dồn về tổng a + b + c §6. Bất đẳng thức xử lý cụm x^2.y + y^2.z + z^2.x §7. Bất đẳng thức xử lý cụm xyz §8. Bất đẳng thức sử dụng tiếp tuyến §9. Bất đẳng thức sử dụng đặt ẩn phụ [ads] §10. Bất đẳng thức có biên bằng 0 §11. Bất đẳng thức sử dụng phương pháp thế §12. Bất đẳng thức Mincopxky §13. Bất đẳng thức có giả thiết đồng bậc §14. Bất đẳng thức đồng bậc §15. Phương pháp cố định biến số §16. Bất đẳng thức có hiệu a – b §17. Phương pháp lượng giác hóa và vectơ §18. Phương pháp ép biến