Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 2023 sở GD ĐT Cà Mau Sytu xin chào đến quý thầy, cô giáo và các em học sinh lớp 9 với đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Cà Mau, được tổ chức vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau: - Cho Parabol (P): y = 3/2.x^2 và đường thẳng (d): y = 2mx + 1. a) Chứng minh rằng đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên mặt phẳng Oxy và tìm tọa độ giao điểm của chúng. - Một xí nghiệp chế biến thủy sản dự kiến đóng 3,000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu, họ thực hiện đúng tiến độ, sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu, khiến họ hoàn thành sớm 1 ngày và vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đóng bao nhiêu hộp tôm xuất khẩu? - Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) là bài thi đầy thách thức với nhiều bài toán khó, yêu cầu sự tư duy logic và khả năng suy luận cao. Trong đề thi này, có 5 bài toán tự luận, mỗi bài đều có lời giải chi tiết để giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một trong những bài toán trong đề thi là bài toán về parabol và đường thẳng, đặt ra các điều kiện và yêu cầu tìm ra các giá trị của các hằng số sao cho tam giác tạo bởi các điểm cắt đường thẳng và parabol có diện tích đã cho. Bài toán này đòi hỏi sự tinh tế trong việc xử lý các định lý và phương pháp tính toán. Bài toán khác đưa ra một định lý về tổ hợp các số nguyên không âm để tổng các tích và tổng các số đó đạt giá trị nhất định. Học sinh cần phải sử dụng đến kiến thức về tổ hợp và tìm ra cách giải phù hợp để hoàn thành bài toán. Ngoài ra, đề thi còn có bài toán về hình vuông và việc chứng minh tồn tại tam giác có diện tích không vượt quá một giá trị nhất định. Để giải quyết bài toán này, học sinh cần phải áp dụng kiến thức về hình học và tư duy logic để đưa ra lời giải chính xác. Đề thi tuyển sinh môn Toán của trường THPT chuyên Quốc học - TT Huế (chuyên Tin) không chỉ đánh giá kiến thức mà còn thách thức sự sáng tạo và tư duy của học sinh. Bằng cách học tập và ôn luyện kỹ càng, học sinh sẽ có cơ hội vượt qua thử thách này và chinh phục bài thi một cách xuất sắc.
Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc
Nội dung Đề thi tuyển sinh vào môn Toán của các trường chuyên, chọn trên toàn quốc Bản PDF - Nội dung bài viết Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách đề thi tuyển sinh vào môn Toán của các trường chuyên từ năm 2000 đến nay Sách bao gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên từ năm 2000 đến nay, với lời giải chi tiết. Đây là tài liệu hữu ích giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào các trường chuyên trên toàn quốc. Các đề thi được tổng hợp từ nhiều năm, giúp học sinh ôn tập và nắm vững kiến thức, kỹ năng cần thiết để đạt kết quả cao trong kỳ thi quan trọng này. Sách cung cấp một cách tiếp cận cụ thể, dễ hiểu và chi tiết, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre
Nội dung Đề thi tuyển sinh THPT công lập năm học 2017 2018 môn Toán sở GD và ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Đề thi tuyển sinh THPT công lập năm học 2017-2018 môn Toán sở GD và ĐT Bến Tre Trận đấu sôi động giữa học sinh và bài toán đã bắt đầu. Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre vừa được phát. Hàng loạt bài toán hấp dẫn, đầy thử thách đã được đặt ra. Bài toán đầu tiên yêu cầu giải phương trình \( x^2 - 2(m - 1)x - (2m + 1) = 0 \) với \( m = 2 \). Học sinh cần tìm ra nghiệm của phương trình và làm rõ tính chất của nó với mọi giá trị của \( m \). Với sự khéo léo và kiến thức vững chắc, học sinh sẽ có thể vượt qua thử thách này một cách dễ dàng. Bài toán tiếp theo đưa học sinh vào tế bào của parabol và đường thẳng. Việc vẽ đồ thị của parabol và đường thẳng trên mặt phẳng tọa độ, tìm tọa độ giao điểm của chúng không chỉ đòi hỏi sự kiên nhẫn mà còn sự logic và khả năng suy luận. Đề thi này không chỉ là cơ hội để học sinh thể hiện kiến thức mà còn để họ rèn luyện khả năng tư duy, xử lý vấn đề và tự tin trước những thách thức. Mỗi bài toán là một cửa sổ mở ra thế giới kiến thức, chờ đợi những trí tuệ sáng tạo và nhiệt huyết của các bạn trẻ.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường TH Cao Nguyên Đắk Lắk
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường TH Cao Nguyên Đắk Lắk Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường TH Cao Nguyên - Đắk Lắk bao gồm 4 bài toán tự luận với lời giải chi tiết. Trong số các bài toán trong đề thi, có một số bài như sau: 1. Bài toán về đường tròn: Có đường tròn tâm O, vẽ hai tiếp tuyến AB và AC từ điểm A nằm ngoài đường tròn. Gọi E là giao điểm của OA và BC. Phần a của bài toán yêu cầu chứng minh tứ giác ABOC nội tiếp, phần b yêu cầu chứng minh một mối liên hệ giữa các độ dài đoạn thẳng trong tứ giác, và phần c yêu cầu chứng minh một số tính chất góc và tam giác. 2. Bài toán về tam giác: Cho tam giác ABC có hai đường phân giác trong BD và CE. Điểm M bất kì trên đoạn DE. Gọi H, K, L lần lượt là hình chiếu của M trên BC, CA, AB. Bài toán yêu cầu chứng minh một mối liên hệ giữa các độ dài đoạn thẳng trong tam giác. Các bài toán trong đề thi này giúp cho học sinh rèn luyện kỹ năng tư duy logic, khả năng giải quyết vấn đề và áp dụng kiến thức Toán vào thực tế. Qua đó, giúp học sinh nắm vững kiến thức cơ bản và phát triển khả năng suy luận, giải quyết vấn đề.