Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI Toán 10 năm 2019 - 2020 trường THPT Ngô Gia Tự - Đắk Lắk

Theo đúng như kế hoạch đã đề ra trong phân phối chương trình Toán 10, ngày … tháng 12 năm 2019, trường THPT Ngô Gia Tự, tỉnh Đắk Lắk tổ chức kỳ thi kiểm tra học kỳ 1 môn Toán lớp 10 năm học 2019 – 2020. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HKI Toán 10 năm 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk, đề có mã đề 001 gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm có 20 câu, chiếm 4,0 điểm, phần tự luận gồm 04 câu, chiếm 6,0 điểm, học sinh có 90 phút để hoàn thành bài thi, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 10 năm 2019 – 2020 trường THPT Ngô Gia Tự – Đắk Lắk : + Chọn khẳng định đúng trong các khẳng định sau: A. Tập rỗng là tập có hai phần tử. B. Tập rỗng là tập có một phần tử. C. Tập rỗng là tập không chứa phần tử nào. D. Tập rỗng là tập có ba phần tử. + Cho tứ giác ABCD. Có thể lập được nhiều nhất mấy vecto khác vecto không có các điểm đầu và cuối là các đỉnh của tứ giác? [ads] + Cho ba điểm A(2;5), B(1;2), C(4;1). Tìm tọa độ điểm D sao cho tam giác ABD nhận C làm trọng tâm và tìm tọa độ điểm M sao cho MB + 3MC = 0. + Cho tam giác ABC có G là trọng tâm, M là trung điểm của BC. Phân tích các vectơ BC, GM theo theo hai vecto AB, AC. + Trong mặt phẳng (Oxy) cho tam giác ABC. Biết A B (5;5), (2;1) và C(1;2). a. Tính AB.AC. b. Tính diện tích của ∆ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Ngô Gia Tự Đắk Lắk
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Ngô Gia Tự Đắk Lắk Bản PDF Chiều thứ Tư ngày 30 tháng 12 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi khảo sát chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 20 câu, chiếm 04 điểm, phần tự luận gồm 05 câu, chiếm 06 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian với hệ tọa độ Oxy, cho tam giác ABC với A(2;2), B(8;2), C(8;8). a) Tìm tọa độ các vectơ AB, AC và số đo góc CAB của tam giác ABC. b) Tìm m để điểm M(m;0) tạo với hai điểm A, B lập thành tam giác MAB vuông tại M. + Trong các câu sau: a) Cố lên, sắp tết rồi! b) Hà Nội là thủ đô của Việt Nam. c) 4 > 4. d) x = 1 + 2. Có bao nhiêu câu là mệnh đề? + Trong mặt phẳng tọa độ Oxy, cho (P) có phương trình: y = -2x^2 + bx + c. Tìm b và c biết (P) qua hai điểm A(-1;2) và B(-2;0). File WORD (dành cho quý thầy, cô):
Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội
Nội dung Đề thi cuối học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Thường Tín Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 đề thi cuối kì 1 Toán lớp 10 năm học 2020 – 2021 trường THPT Thường Tín – Hà Nội; đề thi được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 3,0 điểm, phần tự luận gồm 05 câu, chiếm 7,0 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối kì 1 Toán lớp 10 năm 2020 – 2021 trường THPT Thường Tín – Hà Nội : + Một sợi dây có chiều dài là 6 mét được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất? + Cho tam giác ABC có điểm M thuộc cạnh AC sao cho MA = -2MC, điểm N thuộc cạnh BM sao cho NB = -3NM, điểm P thuộc cạnh BC sao cho PB = kPC. a) Hãy phân tích véc tơ AN theo hai véc tơ AB và AC. b) Tìm giá trị của k để ba điểm A, N, P thẳng hàng. + Cho tam giác ABC. Tập hợp điểm M thỏa mãn: |MA + 2MB + 3MC| = |MB – MC| là: A. Đường tròn bán kính BC. B. Đường trung trực của đoạn BC. C. Trung điểm của BC. D. Đường tròn bán kính BC/6.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm học 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán lớp 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lê Quý Đôn Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lê Quý Đôn Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.