Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Tìm các giá trị của a, b để đường thẳng (d): y = ax + b song song với đường thẳng (d): y = -3x + 5 và đi qua điểm M thuộc đồ thị hàm số y = – x2 có hoành độ bằng -2. + Seagame 31 được tổ chức tại Việt Nam từ ngày 12/05/2022 đến ngày 23/05/2022. Nhân dịp này, siêu thị Điện Máy Xanh đã giảm giá nhiều mặt hàng điện tử để kích cầu mua sắm, ủng hộ phong trào thể thao nước nhà. Giá niêm yết một chiếc Tivi và một tủ lạnh có tổng số tiền là 24,4 triệu đồng. Nhưng trong dịp này một Tivi giảm 40% giá bán và một tủ lạnh giảm 25% giá bán nên Cô Liên đã mua hai món đồ trên với tổng số tiền là 16,77 triệu đồng. Hỏi giá mỗi món đồ trên khi chưa giảm giá là bao nhiêu tiền? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O)(B và C là các tiếp điểm). Kẻ tia Ax (nằm giữa hai tia AB và AO) cắt đường tròn tại E và F (E nằm giữa A và F). a) Chứng minh rằng tứ giác ABOC nội tiếp đường tròn. b) Gọi H là giao điểm của AO và BC. Chứng minh rằng BA2 = AE.AF và OEF = OHF. c) Đường thẳng qua E song song với BF cắt đường thẳng BC tại K. Đường thẳng AK cắt đường thẳng BF tại M. Chứng minh rằng MC = 2HF.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Hà Tĩnh : + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O’), trong đó E và F thuộc đường tròn (O’), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO’ và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA2 – OK2. + Cho các số thực dương a b c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, các học sinh lớp này đều tham gia một số câu lạc bộ của trường. Mỗi học sinh của lớp tham gia đúng một câu lạc bộ. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.
Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Hạ Long - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Hạ Long – Quảng Ninh : + Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. + Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. + Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 05 câu tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường PTNK – TP HCM : + Cho các phương trình x2 – 2ax + 3a = 0 (1) và x2 – 4x + a = 0 (2), trong đó a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68. + Cho phương trình 2^x + 5^y = k (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm. + Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 - 2023 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2022 – 2023 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh; đề thi gồm 10 câu trắc nghiệm (02 điểm) và 04 câu tự luận (08 điểm), thời gian làm bài 120 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2022 – 2023 trường PTNK – TP HCM : + Học sinh kẻ bảng sau vào giấy làm bài thi và trả lời các câu hỏi trắc nghiệm bằng cách: – Ghi 01 ký tự A hoặc B hoặc C hoặc D vào ô trả lời tương ứng với đáp án của câu hỏi. – Bỏ câu trả lời (nếu có) bằng cách gạch chéo ký tự (A hoặc B hoặc C hoặc D) đã ghi và ghi lại 01 ký tự (A hoặc B hoặc C hoặc D) vào ô trả lời tương ứng với đáp án của câu hỏi. + Hình vuông ABCD và hình chữ nhật MNPQ có tổng chu vi bằng 42(cm) và tổng diện tích bằng 55(cm2) và AB = MN. Tính độ dài AC khi MN là chiều rộng của hình chữ nhật MNPQ. + Sẻ Project là một dự án phi lợi nhuận của khối Văn trường Phổ Thông Năng Khiếu – ĐHQG TP. HCM, được thành lập từ năm 2018. Mỗi năm Sẻ đều tổ chức một chương trình thiện nguyện nhằm hỗ trợ cộng đồng. Gọi T2019, T2020, T2021 lần lượt là số tiền Sẻ quyên góp được trong các năm 2019, 2020, 2021. Ngoài các hiện vật, T2020 tăng 40% so với T2019 và bằng 7/10.T2021. Năm 2022, Sẻ đã đóng góp cho thư viện cộng đồng EVG ở xã Phong Thạnh, huyện Cầu Kè, tỉnh Trà Vinh (Phong Thạnh là một trong những xã nghèo, có tỷ lệ học sinh bỏ học cao ở các cấp) số tiền bằng 3 lần T2021 và so với T2019 thì tăng 50 triệu đồng. Tìm T2020.