Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán

Nội dung Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán Bản PDF - Nội dung bài viết Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán Tuyển chọn 50 đề thi tuyển sinh vào chuyên môn Toán Để giúp các em học sinh tham khảo và rèn luyện kỹ năng trong việc làm các đề thi tuyển sinh vào lớp 10 chuyên môn Toán, Sytu đã biên soạn tài liệu tuyển chọn 50 đề thi cho môn Toán. Tài liệu này bao gồm 254 trang với các đề thi được hướng dẫn theo hình thức tự luận, thời gian làm bài 120 phút và đều đi kèm với lời giải chi tiết. Trích dẫn một số đề thi trong tài liệu: Cho tam giác ABC nhọn nội tiếp đường tròn (O) có góc BAC = 45 độ, BC = a. Gọi E, F lần lượt là chân đường vuông góc hạ từ B xuống AC và từ C xuống AB. Gọi I là điểm đối xứng của O qua EF. a) Chứng minh rằng các tứ giác BFOC và AEIF nội tiếp được đường tròn. b) Tính EF theo a. Cho phương trình (x – 2)(x^2 – x) + (4m + 1)x – 8m – 2 = 0 (x là ẩn số). Tìm m để phương trình có ba nghiệm phân biệt x1; x2; x3 thỏa mãn điều kiện x1^2 + x2^2 + x3^2 = 11. Cho phương trình x^2 – 2(m + 1)x + m^2 = 0 (1). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x1 – m)^2 + x2 = m + 2. Tài liệu này sẽ giúp các em học sinh ôn tập và kiểm tra kiến thức một cách kỹ lưỡng, chuẩn bị tốt nhất cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Nam Định (đề chung)
Đề Toán tuyển sinh lớp 10 THPT chuyên 2018 – 2019 sở GD và ĐT Nam Định (đề chung dành cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút, đề nhằm tuyển chọn các em học sinh lớp 9 có năng khiếu môn Toán vào học tại các trường THPT chuyên tại tỉnh Nam Định, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 THPT năm 2018 - 2019 sở GD và ĐT Đắk Lắk
Đề Toán tuyển sinh lớp 10 THPT năm 2018 – 2019 sở GD và ĐT Đắk Lắk được biên soạn vào tổ chức thi vào ngày 08/06/2018 nhằm giúp các trường THPT tại tỉnh Đắk Lắk có cở sở để tuyển chọn các em học sinh phù hợp với tiêu chí của trường để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 chuyên Lê Quý Đôn - Bà Rịa - Vũng Tàu
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh có 120 phút để làm bài, kỳ thi được diễn ra vào ngày 30 tháng 05 năm 2018, đề thi có lời giải chi tiết .