Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức - Nguyễn Tài Chung

Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, hướng dẫn sử dụng nguyên lí Dirichle chứng minh bất đẳng thức, phù hợp với học sinh bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu sử dụng nguyên lí Dirichle chứng minh bất đẳng thức – Nguyễn Tài Chung: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Khẳng định gần như hiển nhiên này được gọi là Nguyên lý Dirichle. [ads] Bây giờ ta hình dung trên trục số, điểm 0 chia trục số thành 2 phần, hay 2 cái chuồng mà vách ngăn là số 0. Như thế với ba số a, b, c mà ta xem như là 3 con chim Bồ Câu thì sẽ có một cái chuồng chứa ít nhất hai con chim Bồ Câu, nghĩa là sẽ có hai số cùng không âm (tức là có hai con chim Bồ Câu cùng thuộc chuồng [0; +∞)) hoặc cùng không dương (tức là có hai con chim Bồ Câu cùng thuộc chuồng (−∞; 0]). Do đó ta có thể giả sử có hai số, mà ta gọi là a và b, sao cho ab ≥ 0. Như vậy, trong bài toán bất đẳng thức, khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán), ví dụ như đẳng thức xảy ra khi a = b = c = k thì ta có thể giả sử 2 số (a − k), (b − k) cùng không âm hoặc cùng không dương, tức là có thể giả sử (a − k)(b − k) ≥ 0. B. BÀI TẬP

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải toán bằng cách lập phương trình hệ phương trình ôn thi vào
Nội dung Chuyên đề giải toán bằng cách lập phương trình hệ phương trình ôn thi vào Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập phương trình hệ phương trình - Sách ôn thi vào lớp 10 môn Toán Chuyên đề giải toán bằng cách lập phương trình hệ phương trình - Sách ôn thi vào lớp 10 môn Toán Sách này bao gồm 20 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và chứa các bài tập chuyên đề giải toán bằng cách lập phương trình - hệ phương trình. Tất cả các câu hỏi đều có đáp án và lời giải chi tiết, giúp cho học sinh lớp 9 có thể ôn tập một cách hiệu quả để chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán. Những bài toán được trích từ các nguồn đáng tin cậy, đảm bảo độ khó và đa dạng cho học sinh.
Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu ôn thi vào lớp 10 môn Toán - Hệ phương trình bậc nhất hai ẩn Tài liệu chuyên đề này bao gồm 09 trang, được thiết kế dành cho học sinh lớp 9 chuẩn bị cho kì thi tuyển sinh vào lớp 10. Nội dung tài liệu tập trung vào phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình bậc nhất hai ẩn, kèm theo đáp án và lời giải chi tiết. Các bài tập được lựa chọn từ các nguồn đáng tin cậy, giúp học sinh hiểu rõ về kiến thức và rèn luyện kỹ năng giải bài toán hiệu quả.
Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào
Nội dung Chuyên đề hàm số bậc nhất và hàm số bậc hai ôn thi vào Bản PDF - Nội dung bài viết Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Một tài liệu hữu ích cho học sinh lớp 9 ôn tập hàm số bậc nhất và hàm số bậc hai Tài liệu này có tổng cộng 31 trang, cung cấp hướng dẫn chi tiết về phương pháp giải và lựa chọn các bài tập chuyên đề về hàm số bậc nhất và hàm số bậc hai. Nội dung của tài liệu bao gồm các bài tập được chọn lọc từ các đề thi tuyển sinh vào lớp 10 môn Toán, kèm theo đáp án và lời giải chi tiết. Đây sẽ là nguồn tư liệu hữu ích giúp học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới.
Chuyên đề biến đổi đại số ôn thi vào
Nội dung Chuyên đề biến đổi đại số ôn thi vào Bản PDF - Nội dung bài viết Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu ôn thi môn Toán lớp 9 - Chuyên đề biến đổi đại số Tài liệu này bao gồm 31 trang, cung cấp hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề biến đổi đại số. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Các bài toán được lựa chọn từ các nguồn đáng tin cậy, đảm bảo chất lượng và phong phú cho việc ôn tập của học sinh.