Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị

Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Đề thi tuyển sinh THPT chuyên môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 bộ đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Quảng Trị. Bộ đề thi bao gồm đề thi, đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm; kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2022. Trích dẫn bộ đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Trị: Tìm tất cả các số nguyên tố p và q thỏa mãn 2^(p-1) + 2^(q-1) = 2^q. Ba cầu thủ của một đội bóng trò chuyện với nhau về số áo được in trên áo mỗi người, nội dung như sau: An: Tôi nhận ra rằng các số trên áo của chúng ta đều là số nguyên tố có hai chữ số. Bình: Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi đã trôi qua vào tháng này. Chung: Thật thú vị! Tổng hai số trên áo của hai bạn là ngày sinh nhật của tôi sắp tới vào tháng này. An: Và tổng hai số trên áo hai bạn là ngày hôm nay. Hãy xác định số áo của An, Bình và Chung. Cho biểu thức 2f(x) = ax^2 + bx + c (với abc ≠ 0). Đặt ∆ = b^2 - 4ac. Chứng minh rằng nếu ∆ ≤ 0 thì f(x) ≥ 0 với mọi số thực x. File WORD (dành cho quý thầy, cô): [file đính kèm]

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Thái Nguyên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Thái Nguyên gồm có 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho số nguyên dương n thỏa mãn 2n + 1 và 3n + 1 là các số chính phương. Chứng minh 15n + 8 là hợp số. + Bạn Chi được thưởng mỗi ngày ít nhất một chiếc kẹo, nhưng trong 7 ngày liên tiếp, tổng số kẹo Chi nhận được không quá 10 chiếc. Chứng minh trong một số ngày liên tiếp, tổng số kẹo Chi nhận được là 27 chiếc. + Cho đường tròn (I;r) nội tiếp tam giác ABC. Điểm M thuộc cạnh BC với M khác B, M khác C. Đường tròn (I1;r1) nội tiếp tam giác AMC. Đường thẳng song song với BC, tiếp xúc với đường tròn (I1;r1) cắt các cạnh AB, AC lần lượt tại B0, C0. Gọi N là giao điểm của AM với B0C0, đường tròn (I2;r2) nội tiếp tam giác AB0N. Chứng minh: 1. Bốn điểm A, I, I1, I2 cùng nằm trên một đường tròn. 2. r = r1 + r2.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Tây Ninh
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh gồm có 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Tây Ninh : + Cho tam giác ABC có ABC = 30◦, ACB = 15◦ và M là trung điểm của BC. Lấy điểm D thuộc cạnh BC sao cho CD = AB. Tính số đo góc MAD. + Cho a, b, c là các số thực có tổng bằng 0 và −1 ≤ a, b, c ≤ 1. Tìm giá trị lớn nhất của biểu thức P = a2 + 2b2 + c2. + Cho tam giác ABC nhọn, không cân có O là tâm đường tròn ngoại tiếp và AH là đường cao với H thuộc BC. Gọi M là trung điểm cạnh BC và K là hình chiếu vuông góc của M trên cạnh AC. Đường tròn tâm I ngoại tiếp tam giác ABK cắt lại cạnh BC tại D. 1. Chứng minh CH.CM = CB.CD. 2. Gọi N là trung điểm của AB. Chứng minh I là trung điểm của ON.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Quảng Ngãi
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Quảng Ngãi : + Cho tam giác ABC vuông tại A, có đường cao AH. Tia phân giác của HAC cắt HC tại D. Gọi K là hình chiếu vuông góc của D trên AC. Tính AB, biết BC = 25 cm và DK = 6 cm. + Cho tam giác nhọn ABC có AB < AC, nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC. Đường thẳng AH cắt BC tại D và cắt đường tròn (O) tại điểm thứ hai là K. Gọi L là giao điểm của hai đường thẳng CH và AB, S là giao điểm của hai đường thẳng BH và AC. (a) Chứng minh tứ giác BCSL nội tiếp và BC là đường trung trực của đoạn thẳng HK. (b) Gọi M là trung điểm của BC, đường thẳng OM cắt các đường thẳng AB, AC lần lượt tại P, Q. Gọi N là trung điểm của PQ. Chứng minh hai đường thẳng HM và AN cắt nhau tại một điểm nằm trên đường tròn (O). + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021, đôi một nguyên tố cùng nhau. Chứng minh rằng trong 16 số trên có ít nhất một số là số nguyên tố.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Phú Yên
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Phú Yên : + Cho đường tròn (O; R), lấy điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ hai tiếp tuyến AM, AN (M, N là các tiếp điểm) và cát tuyến ABC (AB < AC). Gọi I là trung điểm của BC, T là giao điểm của NI với (O) ( T khác N). 1. Chứng minh rằng tam giác AMN đều. 2. Chứng minh rằng MT // AC. 3. Tiếp tuyến của (O) tại B, C cắt nhau ở K. Chứng minh rằng ba điểm K, M, N thẳng hàng. + Tìm cặp số (x; y) thỏa mãn phương trình x2 + y2 + 8x + y − 2xy + 3 = 0 sao cho y đạt giá trị lớn nhất. + Cho hình vuông ABCD . Gọi E, F lần lượt là trung điểm của CD, AD và G là giao điểm của AE và BF. 1. Chứng minh rằng FED = FGD. 2. Gọi H là điểm đối xứng với F qua G, I là giao điểm của BD và EF. Đường thẳng qua D, song song với BF cắt HI tại K. Chứng minh rằng K là trực tâm của tam giác G.