Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn

Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi cấp tốc Đại số 9 - Huỳnh Đức Khánh
Tài liệu gồm 29 trang tuyển chọn các bài tập điển hình trong các nội dung Đại số 9, giúp học sinh ôn tập nhanh kiến thức Toán 9. Nội dung tài liệu : Phần 1. Rút gọn căn số Phần 2. Rút gọn biểu thức Phần 3. Hàm số bậc nhất Phần 4. Hệ phương trình bậc nhất hai ẩn Phần 5. Hàm số bậc hai Phần 6. Phương trình bậc hai Phần 7. Giải bài toán bằng cách lập phương trình – lập hệ phương trình [ads] + Bài toán hình học + Bài toán vận tốc + Bài toán công nhân làm việc – bài toán vòi nước + Bài toán luân chuyển xe + Bài toán tăng năng suất + Một số bài toán khác
Chuyên đề giải toán bằng cách lập phương trình, hệ phương trình
Tài liệu gồm 26 trang hướng dẫn giải các bài toán bằng cách lập phương trình, hệ phương trình trong chương trình Toán 9. Phương pháp giải chung : Bước 1. Lập phương trình hoặc hệ phương trình + Chọn ẩn, đơn vị cho ẩn, điều kiện thích hợp cho ẩn + Biểu đạt các đại lượng khác theo ẩn (chú ý thống nhất đơn vị) + Dựa vào dữ kiện, điều kiện của bài toán để lập phương trình hoặc hệ phương trình Bước 2. Giải phương trình hoặc hệ phương trình Bước 3. Nhận định, so sánh kết quả bài toán, tìm kết quả thích hợp, trả lời (bằng câu viết) nêu rõ đơn vị của đáp số Các dạng toán cơ bản : + Dạng toán chuyển động + Dạng toán liên quan đến các kiến thức hình học + Dạng toán công việc làm chung, làm riêng + Dạng toán chảy chung, chảy riêng của vòi nước + Dạng toán tìm số + Dạng toán sử dụng các kiến thức về % + Dạng toán sử dụng các kiến thức vật lý, hóa học [ads] Các công thức cần lưu ý khi giải bài toán bằng cách lập phương trình, hệ phương trình : + Thời gian t, quãng đường s, vận tốc v: s = v.t, v = s/t, t = s/v + Chuyển động của tàu thuyền khi có tác động dòng nước: V xuôi dòng = V thực + V dòng nước V ngược dòng = V thực – V dòng nước + Khối lượng công việc A, năng suất lao động N, thời gian làm việc T: A = N.T
Các dạng toán căn bậc ba - Nguyễn Chí Thành
Tài liệu gồm 17 trang tuyển tập các bài toán về chủ đề căn bậc 3  (Chương trình Toán 9 – Tập 1) được giải chi tiết. Các dạng toán gồm có: + Dạng 1. Thực hiện phép tính + Dạng 2. Chứng minh đẳng thức + Dạng 3. So sánh hai căn bậc 3 + Dạng 4. Giải phương trình
Chinh phục Toán 9 bằng sơ đồ tư duy - Phạm Nguyên (Đại số - Tập 2)
Nội dung sách được trình bày theo từng dạng toán. Mỗi bài gồm các phần: A. Tóm tắt kiến thức cần học B. Phương pháp giải các dạng toán Các nội dung chính trong sách: + Chương 3. Hệ hai phương trình bậc nhất hai ẩn 1. Phương trình bậc nhất hai ẩn 2. Hệ hai phương trình bậc nhất hai ẩn 3. Giải hệ phương trình bậc nhất hai ẩn 4. Giải toán bằng cách lập hệ phương trình bậc nhất hai ẩn [ads] + Chương 4. Hàm số y = ax^2 (a khác 0) và phương trình bậc hai một ẩn 1. Hàm số y = ax^2 2. Phương trình bậc hai một ẩn 3. Phương trình quy về phương trình bậc hai 4. Giải toán bằng cách lập phương trình