Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GDĐT Bắc Ninh

giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 nội dung đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GD&ĐT Bắc Ninh, kỳ thi nhằm giúp các em làm quen với hình thức tổ chức thi, nắm được cấu trúc đề, các dạng toán cần ôn luyện, để có phương pháp ôn tập hiệu quả cho giai đoạn khoảng 5 tháng còn lại trước khi bắt đầu kỳ thi THPT Quốc gia 2019 môn Toán. Đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GD&ĐT Bắc Ninh có mã đề 102 gồm 05 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài thi trong thời gian 90 phút (không tính thời gian giám thị coi thi phát đề), đề được biên soạn theo cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 mà Bộ Giáo dục và Đào tạo đã công bố vào ngày 06 tháng 12 năm 2018, kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2019, đề thi có đáp án. Trích dẫn đề tập huấn thi THPT Quốc gia 2019 môn Toán sở GD&ĐT Bắc Ninh : + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; AD = 3BC = 3a, AB = a, SA = a√3. Điểm I thỏa mãn vectơ AD = 3AI; M là trung điểm SD, H là giao điểm của AM và SI. Gọi E, F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD). [ads] + Cho phương trình m.ln^2(x + 1) – (x + 2 – m).ln(x + 1) – x – 2 = 0 (1). Tập tất cả giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thỏa mãn 0 < x1 < 2 < 4 < x2 là khoảng (a;+∞). Khi đó a thuộc khoảng nào sau đây? + Khối đa diện nào có số đỉnh nhiều nhất? A. Khối thập nhị diện đều (12 mặt đều). B. Khối bát diện đều (8 mặt đều). C. Khối tứ diện đều. D. Khối nhị thập diện đều (20 mặt đểu).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án mã đề 132 – 209 – 357 – 485; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bà Rịa – Vũng Tàu : + Anh Ba đang trên chiếc thuyền tại vị trí A cách bờ sông 2km, anh dự định chèo thuyền vào bờ và tiếp tục chạy bộ theo một đường thẳng để đến một địa điểm B tọa lạc ven bờ sông, B cách vị trí O trên bờ gần với thuyền nhất là 4km(hình vẽ). Biết rằng anh Ba chèo thuyền với vận tốc 6 km h và chạy bộ trên bờ với vận tốc 10 km h. Khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm B là? + Trong không gian Oxyz, cho ba điểm A 1 4 5 B 3 4 0 C 2 1 0 và mặt cầu 2 2 2 S x y z 1 1 3 4 điểm N thay đổi trên mặt cầu S. Gọi M m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 2 2 P NA NB NC 3. Giá trị M m bằng? + Cho hình nón đỉnh S, đường cao SO. Gọi A và B là hai điểm thuộc đường tròn đáy hình nón sao cho khoảng cách từ O đến AB bằng a và 0 SAO 30 0 SAB 60. Diện tích xung quanh hình nón bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi có đáp án mã đề 101 – 102 – 103 – 104; kỳ thi được diễn ra vào thứ Năm ngày 30 tháng 03 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bắc Giang : + Cho khối nón tròn xoay đỉnh S, đáy là đường tròn tâm O, góc ở đỉnh bằng 0 120. Mặt phẳng (Q) thay đổi, đi qua S và cắt khối nón theo thiết diện là tam giác SAB. Biết rằng giá trị lớn nhất diện tích tam giác SAB là 2 2a. Khoảng cách từ O đến mặt phẳng (Q) trong trường hợp diện tích tam giác SAB đạt giá trị lớn nhất là? + Trong tập các số phức, cho phương trình 2 z m z m 2 1 6 2 0 (m tham số thực). Hỏi có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có hai nghiệm phân biệt 1 2 z z thỏa mãn 1 2 z z. + Xếp ngẫu nhiên 3 quả cầu màu đỏ có kích thước khác nhau và 3 quả cầu màu xanh giống nhau vào một giá chứa đồ nằm ngang có 7 ô trống, mỗi quả cầu được xếp vào một ô. Tính xác suất để 3 quả cầu màu đỏ xếp cạnh nhau và 3 quả cầu màu xanh xếp cạnh nhau?
Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán cụm các trường THPT thuộc huyện Nam Trực, tỉnh Nam Định; đề thi mã đề 501; hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút. Trích dẫn Đề thi thử TN THPT 2023 môn Toán cụm trường THPT huyện Nam Trực – Nam Định : + Cho a, b là các số thực dương khác 1, đường thẳng d song song trục hoành cắt trục tung, đồ thị hàm số y = ax, đồ thị hàm số y = bx lần lượt tại H, M, N (như hình bên). Biết HM = 3MN. Mệnh đề nào sau đây đúng? + Trong không gian với hệ trục Oxyz, cho điểm A(2;-2;2) và mặt cầu (S): x2 + y2 + (z + 2)2 = 1. Điểm M di chuyển trên mặt cầu (S) đồng thời thỏa mãn OM.AM = 6. Điểm M luôn thuộc mặt phẳng nào dưới đây? + Cho khối chóp S.ABC có đáy là tam giác vuông cân tại B. Khoảng cách từ A đến mặt phẳng (SBC) bằng a2, SAB = SCB = 90°. Khi độ dài cạnh AB thay đổi, thể tích khối chóp S.ABC có giá trị nhỏ nhất bằng?
Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 2 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 111). Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 2 trường chuyên Hạ Long – Quảng Ninh : + Trong không gian cho hệ trục Oxyz; cho A(1;1;2), B(-4;0;11), C(0;–21;0). Có bao nhiêu điểm D sao cho A, B, C, D là bốn đỉnh của một hình bình hành. A. Có vô số điểm D C. Có 2 điểm D B. Có duy nhất một điểm D D. Có 3 điểm D. + Cho mặt cầu S(O;9). Một hình nón có đỉnh và đường tròn đáy nằm trên mặt cầu S. Khi thể tích của hình nón lớn nhất, diện tích đường tròn đáy của hình nón thuộc khoảng nào dưới đây? + Trong không gian cho hệ trục Oxyz; lấy các điểm A(a;0;0), B(0;b;0), C(0;0;c), D với a, b, c dương. Biết diện tích tam giác ABC bằng 3/2 (đvdt) và thể tích tứ diện ABCD đạt giá trị lớn nhất. Khi đó phương trình mặt phẳng (ABD) là mx + ny + pz + 1 = 0. Tính m + n + p.