Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nam Duyên Hà Thái Bình

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nam Duyên Hà Thái Bình Bản PDF Đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nam Duyên Hà – Thái Bình được dành cho học sinh khối 11 theo học chương trình Toán lớp 11 cơ bản (chương trình chuẩn), đề thi gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101. Trích dẫn đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nam Duyên Hà – Thái Bình : + Tìm mệnh đề đúng trong các mệnh đề sau: A. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó. B. Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng đều song song với mọi đường thẳng nằm trong mặt phẳng (β). C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt mặt phẳng (α) và (β) thì (α) và (β) song song với nhau. D. Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng (α) đều song song với mặt phẳng (β). + Ở một phường, giữa khu vực A và khu vực B có 8 con đường khác nhau nối hai khu (đều là đường hai chiều). Một người muốn đi từ khu A đến khu B rồi trở về bằng hai con đường khác nhau. Số cách đi rồi về là? + Khẳng định nào sau đây là đúng khi đánh giá bài làm trên của học sinh? A. Học sinh chứng minh sai vì không dùng giả thiết qui nạp. B. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp khi n = 1. C. Học sinh trên chứng minh đúng. D. Học sinh chứng minh sai vì không có giả thiết qui nạp. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Quốc Trí - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Quốc Trí, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường Trương Vĩnh Ký, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Linh Trung - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Linh Trung, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Linh Trung – TP HCM : + Một nhóm học sinh gồm 12 bạn nam trong đó có Khoa và 5 bạn nữ trong đó có Linh, được xếp vào 17 ghế thành một hàng ngang. Tính xác suất để không có bạn nữ nào ngồi cạnh nhau và giữa hai bạn nữ có đúng 3 bạn nam ngồi cạnh nhau, đồng thời Khoa và Linh không ngồi cạnh nhau. + Một vận động viên điền kinh sau khi phẫu thuật đầu gối được theo một lớp huấn luyện chương trình chạy bộ từ từ, chương trình này quy định thời gian chạy của mỗi ngày trong một tuần là như nhau: trong tuần đầu tiên vận động viên đó chỉ được chạy bộ 10 phút mỗi ngày. Cứ sau mỗi tuần, vận động viên đó được tăng thời gian chạy lên 5 phút mỗi ngày. Hỏi phải đến tuần thứ mấy thì vận động viên đó chạy bộ được 60 phút mỗi ngày? + Tìm số hạng chứa x6 trong khai triển (x4 + 1/x2)^12 với x khác 0.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT Nguyễn Du - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT Nguyễn Du – TP HCM : + Đoàn trường THPT Nguyễn Du có 14 đoàn viên ưu tú, trong đó có 6 đoàn viên nam và 8 đoàn viên nữ. Hãy cho biết đoàn trường có bao nhiêu cách chọn ra 6 đoàn viên đi dự hội trại sao cho có ít nhất hai đoàn viên nữ và hai đoàn viên nam. + Trong giờ học môn giáo dục quốc phòng tại trường THPT Nguyễn Du, thầy giáo yêu cầu ba học sinh A1, A2, A3 độc lập với nhau cùng nổ súng bắn vào mục tiêu. Biết rằng xác suất bắn trúng mục tiêu của ba em học sinh A1, A2, A3 tương ứng là 0,7; 0,6 và 0,5. Tính xác suất để có ít nhất một em học sinh bắn trúng mục tiêu. + Cho tứ diện ABCD. Gọi M là điểm nằm trên cạnh BC sao cho BM = 2MC, N là trung điểm của BD và G là trọng tâm của tam giác ABD. a) Tìm giao tuyến của cặp mặt phẳng (AMN) và (ACD). b) Chứng minh đường thẳng MG song song với mặt phẳng (ACD).