Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương HK2 Toán 11 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - Gia Lai

Nhằm chuẩn bị cho kỳ thi học kỳ 2 môn Toán 11 sắp tới, giới thiệu đến các em đề cương HK2 Toán 11 năm học 2019 – 2020 trường THPT Nguyễn Bỉnh Khiêm – Gia Lai; đề cương gồm 20 trang, bao gồm các bài tập tự luận, bài tập trắc nghiệm có đáp án Đại số & Giải tích 11 và Hình học 11. Trích dẫn đề cương HK2 Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – Gia Lai : + Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và cạnh đáy đều bằng a, gọi O là tâm hình vuông ABCD. 1) Tính độ dài đoạn SO. 2) Gọi M là trung điểm SC. Chứng minh rằng: (MBD) ⊥ (SAC). 3) Xác định và tính góc giữa hai mặt phẳng (MBD) và ( ABCD). 4) Xác định góc giữa cạnh bên và mặt đáy. 5) Xác định góc giữa mặt bên và mặt đáy. 6) Tính khoảng cách từ A đến mặt phẳng (SBD). 7) Tính khoảng cách giữa hai đường thẳng SA và BD. [ads] + Cho phương trình -4x^3 + 4x – 1 = 0. Tìm khẳng định sai trong các khẳng định sau: A. Phương trình đã cho có ít nhất một nghiệm trong (−2;0). B. Phương trình đã cho có ba nghiệm phân biệt. C. Phương trình đã cho có ít nhất một nghiệm trong (-1/2;1/2). D. Phương trình đã cho chỉ có một nghiệm trong khoảng (0;1). + Mệnh đề nào sau đây sai? A. Khoảng cách giữa đường thẳng a và mặt phẳng (alpha) song song với a là khoảng cách từ một điểm A bất kì thuộc a tới mặt phẳng (alpha). B. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (alpha) chứa a và song song với b đến một điểm N bất kì trên b. C. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kì trên mặt phẳng này đến mặt phẳng kia. D. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường vuông góc chung của chúng nằm trong mặt phẳng (alpha) chứa đường này và (alpha) vuông góc với đường kia.

Nguồn: toanmath.com

Đọc Sách

Đề cương ôn thi học kỳ 2 Toán 11 trường THPT Trung Văn - Hà Nội
Tài liệu gồm 31 trang tuyển tập bộ câu hỏi trắc nghiệm về tự luận thuộc các chủ đề học kỳ 2 Toán 11: giới hạn, đạo hàm và hình học không gian.
Đề cương ôn tập thi học kỳ 2 Toán 11 - Đặng Ngọc Hiền
Tài liệu ôn tập thi học kỳ 2 Toán 11 do thầy Đặng Ngọc Hiền sưu tầm và biên soạn. Nội dung đề cương gồm: + Các chủ đề cần ôn tập + Tóm tắt lý thuyết và các công thức tính toán + Bài tập trắc nghiệm có đáp án
Phương pháp giải các dạng bài Toán 11 học kỳ 2 - Nguyễn Tiến Đạt
Tài liệu gồm 122 trang trình bày phương pháp giải các dạng toán trong chương trình học kỳ 2 Toán 11 (bao gồm cả Đại số & Giải tích 11 và Hình học 11), tài liệu được biên soạn bởi thầy Nguyễn Tiến Đạt. Khái quát nội dung tài liệu phương pháp giải các dạng bài Toán 11 học kỳ 2 – Nguyễn Tiến Đạt: PHẦN 1 . ĐẠI SỐ VÀ GIẢI TÍCH 11 Tìm giới hạn của dãy (un) có giới hạn hữu hạn. + Dạng 1: (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n), Q(n) là hai đa thức của n). + Dạng 2: (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n), Q(n) là các biểu thức chứa căn của n). + Dạng 3: (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n), Q(n) là các biểu thức chứa hàm mũ a^n, b^n, c^n …. Chia cả tử và mẫu cho a^n với a là cơ số lớn nhất). + Dạng 4: Nhân lượng liên hợp. Giới hạn hàm số lý thuyết và phương pháp giải toán. [ads] Cách khử dạng vô định 0/0 (Dạng này thường gặp khi x → x0). + Dạng 1: Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là hai đa thức theo biến x. + Dạng 2: Nhân liên hợp. Giới hạn khi x tiến tới vô cực. Giới hạn một bên. Hàm số liên tục. Đếm số nghiệm. Sử dụng máy tính để tính nhanh giới hạn. PHẦN 2 . HÌNH HỌC 11 Bài toán góc trong hình học không gian. + Dạng 1: Góc giữa hai đường thẳng. + Dạng 2: Góc giữa đường thẳng và mặt phẳng. + Dạng 3: Góc giữa hai mặt phẳng. Bài toán khoảng cách trong hình học không gian. + Dạng 1: Khoảng cách từ một điểm đến một mặt phẳng. + Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau.
Đề cương ôn thi HK2 môn Toán lớp 11 GDTX Quảng Điền
Đề cương ôn thi HK2 môn Toán lớp 11 GDTX Quảng Điền – Hoàng Hữu Tài.