Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nội

Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nội Đề tuyển sinh môn Toán năm 2023-2024 sở GD&ĐT Hà Nội Chào đón quý thầy cô và các em học sinh! Đến với chúng tôi, quý vị sẽ được giới thiệu về đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2023-2024 tại sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi này dự kiến diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023, với đề thi đầy đủ đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong Đề tuyển sinh lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một phân xưởng cần làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm cần làm theo kế hoạch. Sau khi làm xong 900 sản phẩm 3 ngày sớm, hỏi phân xưởng cần làm bao nhiêu sản phẩm mỗi ngày? 2. Tính thể tích của một khối gỗ dạng hình trụ, khi bán kính đáy là 30cm và chiều cao là 120cm (lấy π ≈ 3,14). 3. Trong tam giác ABC có ba góc nhọn và đường tròn nội tiếp (O). Chứng minh rằng tứ giác SAOI nội tiếp và OAH bằng IAD. Tiếp tục với việc vẽ đường cao CE của tam giác ABC, gọi Q là trung điểm của đoạn BE. Chứng minh BQ.BA = BD.BI và CK song song với SO. Hãy tự tin và sẵn sàng đối mặt với những thách thức trong kỳ thi tuyển sinh sắp tới. Hãy ôn tập kỹ lưỡng và chúc quý thí sinh thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Lạng Sơn
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề), đề thi được sử dụng cho các thí sinh thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. + Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. + Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm lần lượt là 10101 điểm đã cho và bán kính đều bằng √2 cm. Hỏi có hay không 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm? Tại sao?
Đề tuyển sinh 10 môn Toán năm 2020 - 2021 trường chuyên Lê Quý Đôn - Khánh Hòa
Đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh 10 môn Toán năm 2020 – 2021 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho P(x) = ax2 + bx + c là số nguyên với mọi x là số nguyên. Chứng minh rằng: 2a, b + c, c là các số nguyên. + Cho x, y là các số thực dương và x5 − y3 ≥ 2x. Chứng minh rằng x3 ≥ 2y. + Để xác thực tài khoản của người dùng A, một ứng dụng yêu cầu người đó thiết lập một mật khẩu là một số tự nhiên gồm 3 chữ số và chia hết cho 6, trong đó các chữ số phải lớn hơn 4. Hỏi người dùng A có thể tạo ra bao nhiêu mật khẩu theo yêu cầu trên.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 - 2021 sở GDĐT Hà Nam
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, kỳ thi được diễn ra ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho hàm số y = ax2 (a khác 0) có đồ thị là parabol như hình vẽ. Xác định hệ số a. + Cho phương trình 12×2 = x + m2 (với m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m ∈ R. Tìm các giá trị của m để x1 = p320 − x32. + Cho đường tròn (O), đường kính AB cố định. Điểm H cố định nằm giữa hai điểm A và O sao cho AH < OH. Kẻ dây cung MN vuông góc với AB tại H. Gọi C là điểm tùy thuộc cung lớn MN sao cho C không trùng với M, N và B. Gọi K là giao điểm của AC và MN. 1. Chứng minh tứ giác BCKH nội tiếp. 2. Chứng minh tam giac AMK đồng dạng với tam giác ACM. 3. Cho độ dài đoạn thẳng AH = a. Tính AK.AC − HA.HB theo a . 4. Gọi I là tâm đường tròn ngoại tiếp tam giác MKC. Xác định vị vị trí của điểm C để độ dài đoạn thẳng IN nhỏ nhất.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 2021 sở GDĐT Gia Lai
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Gia Lai : + Tìm giá trị của tham số m để hàm số y = (m − 1) x + m2 nghịch biến trên R và đồ thị của nó đi qua điểm M (2; 1). + Cho phương trình x2 − 2(m − 1)x + 2m − 4 = 0 (với m là tham số) có hai nghiệm phân biệt x1; x2. Tìm giá trị của tham số m để x21 + x22 = 3. + Tìm nghiệm nguyên dương của phương trình 2×2 − 8x + 62 = (x − 1)y2 + x2 − 6x + 5.