Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề ôn tập cuối học kì 2 (HK2) lớp 10 môn Toán Cánh Diều (70% TN + 30% TL)

Nội dung 10 đề ôn tập cuối học kì 2 (HK2) lớp 10 môn Toán Cánh Diều (70% TN + 30% TL) Bản PDF Tài liệu gồm 144 trang, tuyển tập 10 đề ôn tập kiểm tra cuối học kì 2 môn Toán lớp 10 theo chương trình SGK Toán lớp 10 Cánh Diều; các đề được biên soạn theo hình thức 70% trắc nghiệm kết hợp 30% tự luận (theo điểm số), phần trắc nghiệm gồm 35 câu, phần tự luận gồm 04 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. MA TRẬN ĐỀ KIỂM TRA CUỐI KỲ 2 MÔN TOÁN LỚP 10 CÁNH DIỀU: V. Đại số tổ hợp. 1. Quy tắc cộng và quy tắc nhân. 2. Hoán vị, chỉnh hợp. 3. Tổ hợp. 4. Nhị thức Newton. VI. Một số yếu tố Thống kê và xác suất. 1. Số gần đúng và sai số. 2. Các số đặc trưng đo xu thế trung tâm của mẫu số liệu. 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu. 4. Xác suất của biến cố. X. PP tọa độ trong mặt phẳng. 1. Tọa độ của véctơ. Biểu thức tọa độ các phép toán Vectơ. 2. PT đường thẳng trong mp tọa độ. 3. Vị trí tương đối và góc giữa 2 đường thẳng thẳng. Khoảng cách từ 1 đểm đến đường thẳng. 4. PT đường tròn trong mp tọa độ. 5. Ba đường Conic và ứng dụng. Lưu ý : – Các câu hỏi ở cấp độ nhận biết và thông hiểu là các câu hỏi trắc nghiệm khách quan 4 lựa chọn, trong đó có duy nhất 1 lựa chọn đúng. – Các câu hỏi ở cấp độ vận dụng và vận dụng cao là các câu hỏi tự luận. – Số điểm tính cho 1 câu trắc nghiệm là 0,20 điểm/câu; số điểm của câu tự luận được quy định trong hướng dẫn chấm nhưng phải tương ứng với tỉ lệ điểm được quy định trong ma trận. Phần tự luận: Để được phong phú mình để nhiều lựa chọn: – Hai câu vận dụng mỗi câu 1,0 điểm ta chọn ở 1* sao cho 1 câu Đại Số và 1 câu Hình học. – Hai câu vận dụng cao mỗi câu 0,5 điểm ta chọn ở 1** sao cho 1 câu Đại Số và 1 câu Hình học.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tìm m để phương trình 2 m x m x m 1 3 1 0 có hai nghiệm phân biệt. + Trong mặt phẳng Oxy, viết phương trình chính tắc của elip (E), biết (E) có độ dài trục lớn bằng 16 và tiêu điểm F1(3;0). + Trong mặt phẳng Oxy, cho hai điểm A, B. Viết phương trình đường tròn có đường kính là AB.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có các đỉnh. a) Viết phương trình đường thẳng d đi qua trọng tâm G của tam giác ABC và d song song với đường thẳng AB . b) Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn. Viết phương trình tiếp tuyến của đường tròn biết rằng đường thẳng vuông góc với đường thẳng. + Trong mặt phẳng với hệ tọa độ Oxy, viết phương trình chính tắc của elip E biết E đi qua điểm A và có độ dài trục nhỏ bằng tiêu cự.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Trong mặt phẳng Oxy, cho tam giác ABC có A(1;2), B(5;2), C(1;−3). Viết phương trình đường cao AH của tam giác ABC. + Trong mặt phẳng Oxy, viết phương trình đường tròn (C) có đường kính MN với M(−3;2); N(1;−2). + Trong mặt phẳng tọa độ Oxy, cho elip 2 2 1 16 9 x y E. Xác định tọa độ các đỉnh, tiêu điểm; độ dài trục lớn; độ dài trục nhỏ và tiêu cự của Elip.