Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề nhắc lại và bổ sung các khái niệm về hàm số

Nội dung Tài liệu lớp 9 môn Toán chủ đề nhắc lại và bổ sung các khái niệm về hàm số Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán - Hàm sốA. Tóm tắt lý thuyếtB. Bài tập và các dạng toán Tài liệu lớp 9 môn Toán - Hàm số Tài liệu này bao gồm 24 trang, cung cấp kiến thức cơ bản, các dạng toán và bài tập liên quan đến chủ đề nhắc lại và bổ sung về khái niệm hàm số trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết cho từng bài tập. A. Tóm tắt lý thuyết 1. Khái niệm hàm số: - Hàm số là một quy luật quan hệ giữa hai đại lượng, trong đó giá trị của một biến số phụ thuộc vào giá trị của một biến số khác. - Hàm số có thể được biểu diễn bằng bảng số hoặc công thức. - Khi y là hàm số của x, ta viết y = f(x) hoặc y = g(x). - Hàm hằng là hàm số mà giá trị của y không thay đổi khi x thay đổi. 2. Giá trị của hàm số, điều kiện xác định: - Giá trị của hàm số f(x) tại x=0 là y=f(0). - Điều kiện xác định của hàm số f(x) là tất cả các giá trị của x mà làm cho f(x) có ý nghĩa. 3. Đồ thị của hàm số: - Đồ thị của hàm số y=f(x) là tập hợp các điểm M(x,y) trong mặt phẳng Oxy thỏa mãn y=f(x). - Điểm M(x,y) thuộc đồ thị y=f(x) ⇔ y=f(x). 4. Hàm số đồng biến, hàm số nghịch biến: - Một hàm số y=f(x) được gọi là đồng biến trên R nếu khi x tăng thì y cũng tăng. - Một hàm số y=f(x) được gọi là nghịch biến trên R nếu khi x tăng thì y giảm. B. Bài tập và các dạng toán Các dạng bài tập trong tài liệu bao gồm: Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng Oxy. Tài liệu còn bao gồm các bài tập trắc nghiệm và bài tập về nhà để học sinh tự ôn tập thêm.

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông
Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông (Toán 9 phần Hình học), có đáp án và lời giải chi tiết. Trích dẫn tuyển tập 25 bài toán thực tế ứng dụng hệ thức lượng trong tam giác vuông : + Một người thợ sử dụng thước ngắm có góc vuông để đo chiều cao một cây dừa, với các kích thước đo được như hình bên. Khoảng cách từ góc cây đến chân người thợ là 4,8m và từ vị trí chân đứng thẳng trên mặt đất đến mắt của người nhắm là 1,6m. Hỏi với các kích thước trên, người thợ đo được chiều cao của cây đó là bao nhiêu? (làm tròn đến mét). + Muốn tính khoảng cách từ điểm A đến điểm B bên kia bờ sông, ông Việt vạch một đường vuông góc với AB. Trên đường vuông góc này lấy một đoạn thẳng AC = 30m, rồi vạch CD vuông góc với phương BC cắt AB tại D (xem hình vẽ). Đo AD = 20m, từ đó ông Việt tính được khoảng cách từ A đến B. Em hãy tính độ dài AB và số đo góc ACB. + Một cây cao có chiều cao 6m. Để hái một buồng cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó, khi đó góc của thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8m (làm tròn đến phút). + Một máy bay đang bay ở độ cao 12 km. Khi bay hạ cánh xuống mặt đất, đường đi của máy bay tạo một góc nghiêng so với mặt đất. a) Nếu cách sân bay 320 km máy bay bắt đầu hạ cánh thì góc nghiêng là bao nhiêu (làm tròn đến phút)? b) Nếu phi công muốn tạo góc nghiêng 5 thì cách sân bay bao nhiêu kilômét phải bắt đầu cho máy bay hạ cánh (làm tròn đến chữ số thập phân thứ nhất)? + Trường bạn An có một chiếc thang dài 6 m. Cần đặt chân thang cách chân tường một khoảng cách bằng bao nhiêu để nó tạo với mặt đất một góc “an toàn” là 65 (tức là đảm bảo thang không bị đổ khi sử dụng).
Hệ thức lượng trong tam giác vuông - Lương Anh Nhật
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Lương Anh Nhật, trình bày lý thuyết, các ví dụ minh họa và bài tập chuyên đề hệ thức lượng trong tam giác vuông (Toán 9 phần Hình học). CHƯƠNG I : HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG. BÀI 1: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. I. Đặt vấn đề. II. Một số hệ thức về cạnh và đường cao trong tam giác. BÀI 2: TỶ SỐ LƯỢNG GIÁC CỦA MỘT GÓC NHỌN. I. Khái niệm tỷ số lượng giác của một góc nhọn. II. Tỷ số lượng giác của hai góc phụ nhau. III. Một số hệ thức cơ bản. IV. Bảng giá trị lượng giác của một số góc đặc biệt. BÀI 3: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG. I. Các hệ thức. II. Giải tam giác vuông. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG I. BÀI 1: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ ĐƯỜNG CAO TỎNG TAM GIÁC VUÔNG. BÀI 2: TỶ SỐ LƯỢNG GIÁC CỦA MỘT GÓC NHỌN. BÀI 3: MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG.
Chinh phục các dạng toán Đại số 9 - Lương Anh Nhật
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Anh Nhật, hướng dẫn phương pháp chinh phục các dạng toán Đại số 9. CHƯƠNG I. CĂN BẬC HAI – CĂN BẬC BA. BÀI 1: CĂN BẬC HAI. BÀI 2: BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN THỨC BẬC HAI. BÀI 3: GIẢI MỘT SỐ PHƯƠNG TRÌNH CHỨA CĂN THỨC THƯỜNG GẶP. BÀI 4: CĂN BẬC BA. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG I. CHƯƠNG II. HÀM SỐ BẬC NHẤT. BÀI 1: HÀM SỐ. BÀI 2: HÀM SỐ BẬC NHẤT. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG II. CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. BÀI 1: PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. BÀI 2: HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. BÀI 3: GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH. HƯỚNG DẪN MỘT SỐ BÀI TẬP CHƯƠNG III.
Chuyên đề hệ thức lượng trong tam giác vuông - Lư Sĩ Pháp
Tài liệu gồm 34 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, hướng dẫn phương pháp giải các dạng toán Hình học 9 chương 1 chuyên đề hệ thức lượng trong tam giác vuông. §1. MỘT SỐ HỆ THỨC VỂ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG. A. KIẾN THỨC CẦN NẮM. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền. 2. Một số hệ thức liên quan tới đường cao. B. BÀI TẬP. §2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN. A. KIẾN THỨC CẦN NẮM. 1. Khái niệm tỉ số lượng giác của một góc nhọn. 2. Tỉ số lượng giác của hai góc phụ nhau. B. BÀI TẬP. §3. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG. A. KIẾN THỨC CẦN NẮM. 1. Các hệ thức. 2. Các công thức tính diện tích. B. BÀI TẬP. ÔN TẬP CHƯƠNG I. 1. Hệ thức lượng trong tam giác. 2. Tỉ số lượng giác của góc nhọn. 3. Các công thức tính diện tích. CÂU HỎI TRẮC NGHIỆM.