Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ

Nội dung Đề học sinh năng khiếu lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thanh Sơn Phú Thọ Bản PDF - Nội dung bài viết Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Đề học sinh năng khiếu lớp 8 môn Toán năm 2022-2023 phòng GD ĐT Thanh Sơn Phú Thọ Sytu hân hạnh giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu cấp huyện môn Toán lớp 8 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Thanh Sơn, tỉnh Phú Thọ. Đề thi được thiết kế với hình thức 40% trắc nghiệm khách quan và 60% tự luận. Thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án và lời giải chi tiết. Trích dẫn Đề học sinh năng khiếu Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ: - Thí sinh chỉ cần chọn một đáp án đúng trong phần trắc nghiệm khách quan. Toán cấp huyện Phú Thọ, lớp 8, một bài toán được đưa ra như sau: Cho tam giác ABC, các đường trung tuyến BD và CE. Lấy M, N trên BC sao cho BM = MN = NC. Gọi I là giao điểm của AM và BD, K là giao điểm của AN và CE. Biết BC = 10cm, hỏi độ dài IK là bao nhiêu? - Để lập đội tuyển năng khiếu bóng rổ, nhà trường quy định rằng mỗi thí sinh cần ném 10 quả bóng vào rổ. Mỗi quả bóng ném vào rổ sẽ được cộng 4 điểm, còn nếu ném ra ngoài sẽ bị trừ 2 điểm. Để được chọn vào đội tuyển, một học sinh cần ít nhất bao nhiêu quả bóng ném vào rổ? - Trong một câu hỏi khác, đề thi yêu cầu học sinh chứng minh một số khẳng định về tam giác nhọn ABC và mối liên hệ giữa các đường cao, đường trung tuyến, và tâm đường tròn ngoại tiếp tam giác. Đề thi Toán năm 2022-2023 của phòng GD ĐT Thanh Sơn Phú Thọ không chỉ đánh giá kiến thức mà còn khuyến khích học sinh phát triển kỹ năng logic, tư duy toán học và khả năng giải quyết vấn đề. Chúc các em học sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olimpic Toán 8 năm 2020 - 2021 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội. Trích dẫn đề thi Olimpic Toán 8 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết cho 48. + Một mảnh đất hình thang ABCD có AB//CD, AB = BC = AD = a, CD = 2a. a/ Tính các góc của hình thang ABCD. b/ Tính diện tích của hình thang ABCD theo a. c/ Hãy chia mảnh đất ABCD thành 4 mảnh đất hình thang giống hệt nhau bằng nhau. + Cho tam giác ABC. Trên cạnh AB lấy D, trên cạnh AC lấy E sao cho AD = AB, CE = 1/3.AC, CD và BE cắt nhau tại I. Tính các tỷ số.
Đề thi Olympic Toán 8 năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội
Đề thi Olympic Toán 8 năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2021.
Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác đều ABC. Gọi O là trung điểm của BC. Trên cạnh AB và AC lần lượt lấy các điểm di động M và N sao cho MON = 600. Chứng minh rằng: 1) OMB đồng dạng với ONC từ đó suy ra tích BM.CN không đổi. 2) Các tia MO, NO lần lượt là tia phân giác của góc BMN và CNM. 3) Chu vi tam giác AMN không đổi. + Xác định đa thức f(x) biết: f(x) chia cho x – 1 dư 4; chia cho x + 2 dư 1 và chia cho x2 + x – 2 được thương là 5x. + Tìm số tự nhiên k để 4 7 2 2 2 k là số chính phương.
Đề thi HSG Toán 8 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. + Cho O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh AB CA = 4BD AB. b) Kẻ OM vuông góc với CD tại M, từ M kẻ MH vuông góc với AB tại H. Chứng minh BC đi qua trung điểm của MH. c) Tìm vị trí điểm C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. + Năm vận động viên mang số 1; 2; 3; 4 và 5 được chia bằng mọi cách thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số họ mang trùng với một trong các số mà người của nhóm đó mang.