Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra CLB Toán 7 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra CLB Văn Hóa môn Toán 7 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 09 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề kiểm tra CLB Toán 7 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Trên một mặt phẳng cho 8 điểm phân biệt, trong đó có 5 điểm thẳng hàng. Cứ nối 3 điểm phân biệt không thẳng hàng sẽ tạo thành một tam giác, hỏi có bao nhiêu tam giác được tạo thành khi nối các điểm từ 8 điểm trên. + Cho một đường tròn, trên đường tròn lấy 2023 chấm đỏ và 2024 chấm xanh. Người ta viết số 1 vào giữa hai chấm đỏ, viết số –1 vào giữa hai chấm xanh, và viết số 0 vào giữa hai chấm khác màu. Hỏi tổng các số trên đường tròn bằng bao nhiêu? + Cho k là một số tự nhiên khác 0, chứng minh rằng tồn tại số tự nhiên có dạng 1011 1 k chia hết cho 2023.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Có hai chiếc hộp giống nhau. Trong mỗi hộp chứa 4 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4 (hai thẻ khác nhau thì ghi hai số khác nhau). Rút ngẫu nhiên một thẻ ở trong mỗi hộp. Tính xác suất để rút được hai thẻ ghi số giống nhau trong cùng một lần rút? + Cho tam giác ABC vuông tại A có AB = AC, có D là trung điểm BC. Trên đoạn BD lấy E (khác B, D), trên tia đối của tia CB lấy điểm F sao cho BE = CF. Kẻ các đường thẳng vuông góc với BC tại E cắt AB tại G, đường vuông góc với BC tại F cắt AC tại H. Gọi giao điểm của GH với BC là I a) Chứng minh BG = CH, IG = IH. b) Kẻ đường thẳng vuông góc với CA tại C, cắt AD tại M. Chứng minh MI vuông góc với GH. c) Đường thẳng vuông góc với DG tại D cắt AC tại K, chứng minh rằng AK + AG ≤ DG + DK. + Tìm số tự nhiên m, n sao cho 2 3 4 n m là số chính phương.
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đức Thọ, tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biểu đồ đoạn thẳng dưới đây biểu diễn số lượt khách đã đến ăn Phở Bò tại một nhà hàng vào một số thời điểm trong ngày. Tỉ số phần trăm số lượt khách vào ăn Phở tại thời điểm 11 giờ so với tổng số lượt khách vào ăn Phở tại thời điểm 9 giờ đến thời điểm 17 giờ là (Làm tròn kết quả đến chữ số thập phân thứ hai). + Một hộp có chứa bốn cái thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; 3; 4. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên hai thẻ trong hộp. Tính xác xuất của biến cố “Tích các số trên hai thẻ rút ra là số chẵn”. + Diện tích ba mặt của một hình hộp chữ nhật là 30 cm2, 40 cm2 và 75 cm2. Hỏi thể tích của hình hộp đó bằng bao nhiêu cm3?
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho a b là các số nguyên dương, chứng minh rằng biểu thức 2 2 ab a b 2 2 luôn chia hết cho 9. Tìm cặp số tự nhiên x y trong đó y là chữ số, biết rằng: 1 2 … 1 x y x. + Cho tam giác ABC cân tại A (AB BC). Gọi F là trung điểm của AC, qua F kẻ đường thẳng vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN BM. a) Chứng minh: AMC BAC. b) Chứng minh: AM CN. c) Lấy điểm D trên cạnh AC, điểm E trên cạnh AB sao cho AD AE. Trên tia BM lấy I sao cho BI DE. Chứng minh: EI // DB và 2 BC DE BD. + Cho các số nguyên dương abc thỏa mãn abc 2023. Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên: 2023 2023 2023 abc A cab.
Đề thi Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Oai – Hà Nội : + Cho ABC vuông tại A, M là trung điểm của BC, trên tia đối của tia MA, lấy điểm D sao cho AM = MD 1) Chứng minh: AB // CD và AM 1 2 BC. 2) Gọi I và K lần lượt là chân đường vuông góc hạ từ B và C xuống AD, N là chân đường vuông góc hạ từ M xuống AC. a) Chứng minh: IM = MK b) Chứng minh: KN < MC b) ABC thỏa mãn điều kiện gì để AI = IM = MK = KD? + Cho biết 20 công nhân làm xong một đoạn đường hết 60 ngày. Hỏi 15 công nhân làm đoạn đường đó thì hết bao nhiêu ngày? (Giả sử năng suất làm việc của mỗi công nhân là như nhau). + Cho ΔABC có cạnh AB = 1cm và cạnh BC = 4cm. Tính độ dài cạnh AC biết độ dài cạnh AC là một số nguyên. Đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là 1 2 thì đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ là?