Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG

Bài toán trắc nghiệm phương trình mũ và phương trình logarit là bài toán được bắt gặp nhiều trong các đề thi THPT Quốc gia môn Toán, với nhiều dạng bài và độ khó từ mức cơ bản đến nâng cao. Để giúp các em học sinh khối 12 có thêm tài liệu tự học chủ đề phương trình mũ và phương trình logarit (Giải tích 12 chương 2), xa hơn là ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, thầy Nguyễn Bảo Vương đã tổng hợp các câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo – đề minh họa – đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu gồm 99 trang bao gồm 180 câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 . Phương trình logarit (Trang 2). + Dạng 1.1 Phương trình logarit cơ bản (Trang 2). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 4). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số (Trang 6). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 6). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 7). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 7). + Dạng 1.4.1 Phương trình logarit không chứa tham số (Trang 7). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 8). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 9). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 10). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 10). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 10). Dạng 2 . Phương trình mũ (Trang 11). + Dạng 2.1 Phương trình mũ cơ bản (Trang 11). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 13). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 13). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 15). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 17). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 18). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 19). + Dạng 2.5 Phương pháp hàm số (Trang 19). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 19). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 19). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 20). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 21). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Phương trình logarit (Trang 21). + Dạng 1.1 Phương trình logarit cơ bản (Trang 21). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 27). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số  (Trang 32). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 32). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 35). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 41). + Dạng 1.4.1 Phương trình logarit không chứa tham số  (Trang 41). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 43). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 46). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 50). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 52). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 53). Dạng 2 . Phương trình mũ (Trang 57). + Dạng 2.1 Phương trình mũ cơ bản (Trang 57). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 62). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 62). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 69). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 79). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 84). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 85). + Dạng 2.5 Phương pháp hàm số (Trang 87). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 88). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 88). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 91). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 95).

Nguồn: toanmath.com

Đọc Sách

Bài giảng hàm số mũ và hàm số lôgarit Toán 11 KNTTvCS
Tài liệu gồm 164 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số mũ và hàm số lôgarit trong chương trình môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS). BÀI 18 . LŨY THỪA VỚI SỐ MŨ THỰC. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Viết biểu thức dưới dạng lũy thừa. + Dạng 3. So sánh. BÀI 19 . LÔGARIT. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Biểu diễn theo lôgarit. + Dạng 3. So sánh. BÀI 20 . HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. + Dạng 1. Tìm tập xác định, tập giá trị của hàm số. + Dạng 2. So sánh. + Dạng 3. Đồ thị hàm số. BÀI 21 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LÔGARIT. + Dạng 1. Đưa về cùng cơ số. + Dạng 2. Phương pháp đặt ẩn phụ. + Dạng 3. Lôgarit hóa, mũ hóa. BÀI TẬP CUỐI CHƯƠNG VI. BÀI TẬP TỔNG ÔN.
Tài liệu chuyên đề bất phương trình mũ và bất phương trình lôgarit
Tài liệu gồm 94 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề bất phương trình mũ và bất phương trình lôgarit, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ – LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Bất phương trình cơ bản – phương pháp đưa về cùng cơ số. + Dạng 2. Bất phương trình mũ giải bằng phương pháp đặt ẩn phụ. + Dạng 3. Bất phương trình lôgarit giải bằng phương pháp đặt ẩn phụ. + Dạng 4. Bất phương trình mũ – lôgarit phương pháp xét hàm. + Dạng 5. Một số bài toán kết hợp các phương pháp. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Bất phương trình mũ. + Dạng 2. Bất phương trình lôgarit. + Dạng 3. Bất phương trình mũ – mức độ 2 – 3. + Dạng 4. Bất phương trình lôgarit – mức độ 2 – 3. 3. Bài tập trắc nghiệm mức độ vận dụng – vận dụng cao. + Dạng 1. Bất phương trình lôgarit chứa tham số. + Dạng 2. Bất phương trình mũ chứa tham số. + Dạng 3. Bất phương trình nhiều ẩn.
Tài liệu chuyên đề phương trình mũ và phương trình lôgarit
Tài liệu gồm 250 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề phương trình mũ và phương trình lôgarit, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 5 . PHƯƠNG TRÌNH MŨ – LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP TỰ LUẬN. + Dạng 1. Phương trình mũ – phương trình lôgarit cơ bản. + Dạng 2. Phương trình mũ – phương trình lôgarit đưa về cùng cơ số. + Dạng 3. Phương pháp đặt ẩn phụ. + Dạng 4. Giải phương trình mũ, phương trình lôgarit bằng phương pháp lôgarit hóa. + Dạng 5. Giải phương trình mũ và phương trình lôgarit bằng phương pháp hàm số, đánh giá. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm. + Dạng 1. Phương trình mũ. + Dạng 2. Phương trình lôgarit. + Dạng 3. Phương pháp đặt ẩn phụ. + Dạng 4. Phương pháp mũ hóa. + Dạng 5. Phương pháp hàm số, đánh giá. 3. Bài tập trắc nghiệm mức độ vận dụng – vận dung cao (VD – VDC).
Tài liệu chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 356 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. BÀI 1 . LŨY THỪA. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP. + Dạng 1. Tính toán. + Dạng 2. Rút gọn. + Dạng 3. So sánh các lũy thừa. + Dạng 4. Điều kiện cho các biểu thức chứa lũy thừa. + Dạng 5. Chứng minh đẳng thức, bất đẳng thức. BÀI 2 . HÀM SỐ LŨY THỪA. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP. + Dạng 1. Tìm tập xác định của hàm số lũy thừa. + Dạng 2. Đạo hàm hàm lũy thừa y = xα. + Dạng 3. Khảo sát hàm số lũy thừa y = xα. + Dạng 4. Tìm m để hàm số y = x^g(m) đồng biến, nghịch biến trên K. + Dạng 5. Tìm m để hàm số y = [f(x)]^g(m) đồng biến, nghịch biến trên K. BÀI 3 . LÔGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP. + Dạng 1. Tính giá trị của biểu thức. + Dạng 2. Rút gọn. + Dạng 3. So sánh lôgarit. + Dạng 4. Max – min của biểu thức lôgarit. + Dạng 5. Tính logarit theo logarit khác. BÀI 4 . HÀM SỐ MŨ – HÀM SỐ LOGARIT. I. LÝ THUYẾT. II. HỆ THỐNG BÀI TẬP. + Dạng 1. Giới hạn của một số hàm số. + Dạng 2. Tìm tập xác định của hàm số mũ – logarit. + Dạng 3. Đạo hàm của hàm số mũ – logarit. + Dạng 4. Tìm giá trị lớn nhất nhỏ nhất của biểu thức chứa hàm mũ, hàm lôgarít. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM LUỸ THỪA – HÀM SỐ LUỸ THỪA – LOGARIT – HÀM SỐ MŨ – HÀM SỐ LOGARIT. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Hệ thống bài tập trắc nghiệm mức độ 5 – 6 điểm. + Dạng 1. Rút gọn, biến đổi, tính toán biểu thức lũy thừa. + Dạng 2. So sánh các biểu thức chứa lũy thừa. + Dạng 3. Tìm tập xác định của hàm số lũy thừa. + Dạng 4. Đạo hàm hàm số lũy thừa. + Dạng 5. Khảo sát hàm số lũy thừa. + Dạng 6. Câu hỏi lý thuyết. + Dạng 7. Tính, rút gọn biểu thức chứa logarit. + Dạng 8. Tìm tập xác định. + Dạng 9. Tìm đạo hàm. + Dạng 10. Khảo sát hàm số mũ, logarit. 3. Hệ thống bài tập trắc nghiệm mức độ 7 – 8 điểm. + Dạng 1. Biểu diễn biểu thức logarit này theo logarit khác. + Dạng 2. Tìm tập xác định hàm số mũ – logarit. + Dạng 3. Tính đạo hàm mũ – logarit. + Dạng 4. Khảo sát hàm số mũ, logarit. + Dạng 5. Bài toán thực tế. 4. Hệ thống bài tập trắc nghiệm mức độ 9 – 10 điểm.