Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thuận Thành Bắc Ninh

Nội dung Đề HSG huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Thuận Thành Bắc Ninh Bản PDF - Nội dung bài viết Đề HSG huyện lớp 8 môn Toán năm 2021 - 2022 phòng GD ĐT Thuận Thành Bắc Ninh Đề HSG huyện lớp 8 môn Toán năm 2021 - 2022 phòng GD ĐT Thuận Thành Bắc Ninh Chào các thầy cô giáo và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán lớp 8 năm học 2021 - 2022 do phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh tổ chức. Kỳ thi sẽ diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG huyện Toán lớp 8 năm 2021 - 2022 do phòng GD&ĐT Thuận Thành - Bắc Ninh: Cho x, y, z là các số thực dương thoả mãn điều kiện: x + y + z = x.y.z. Hãy chứng minh rằng? Cho hình bình hành ABCD, lấy điểm M trên BD sao cho MB khác MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M và song song với AD cắt AB và CD lần lượt tại K và H. Chứng minh: KF // EH. Chứng minh: các đường thẳng EK, HF, BD đồng quy. Chứng minh: S_MKAE = S_MHCF. Giả sử số A được viết bởi 2n chữ số 1; số B được viết bởi n chữ số 4 với n là số nguyên dương bất kỳ. Chứng minh rằng số A + B + 1 bằng bình phương của một số nguyên. Chúc các em học sinh lớp 8 đạt kết quả cao trong kỳ thi HSG môn Toán sắp tới. Hãy cố gắng hết mình và hi vọng các em sẽ đạt được thành tích tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia đối của tia HB lấy điểm D sao cho HD = HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. 1.Chứng minh CD.CB = CA.CE 2. Tính số đo góc BEC. 3. Gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G. Chứng minh: GB HD BC AH HC. + Cho các số a, b, c thỏa mãn a + b + c = 32. Tìm giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Chứng minh biểu thức: A = 4a(a + b)(a + b + c)(a + c) + b2 c2 0 với mọi a, b, c.
Đề giao lưu HSG Toán 8 năm 2014 - 2015 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác nhọn ABC (AB < AC) có đường cao AH sao cho AH = HC. Trên AH lấy một điểm I sao cho HI = BH. Gọi P và Q là trung điểm của BI và AC. Gọi N và M là hình chiếu của H trên AB và IC ; K là giao điểm của đường thẳng CI với AB; D là giao điểm của đường thẳng BI với AC. a) Chứng minh I là trực tâm của tam giác ABC. b) Tứ giác HNKM là hình vuông. c) Chứng minh bốn điểm N, P, M, Q thẳng hàng. + Cho x là số nguyên. Chứng minh rằng biểu thức M = (x + 1)(x + 2)(x + 3)(x + 4) + 1 là bình phương của một số nguyên. + Cho x, y, z là các số nguyên thỏa mãn: x + y + z chia hết cho 6. Chứng minh M = (x + y)(x + z)(y + z) – 2xyz chia hết cho 6.
Đề học sinh giỏi huyện Toán 8 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho abc là các số hữu tỷ thỏa mãn điều kiện ab bc ca 1. Chứng minh rằng biểu thúc 222 Qa b c là bình phương của một số hữu tỷ. + Cho các số nguyên abc thoả mãn 333 210 ab bc ca. Tính giá trị của biểu thức B ab bc ca. + Cho tam giác ABC, M là một điểm thuộc cạnh BC M kh B M kh C. Qua M kẻ các đường thẳng song song với AC AB, chúng cắt AB AC lần lượt tại D và E. a) Chứng minh tứ giác ADME là hình bình hành. Xác định vị trí của điểm M trên cạnh BC để hình bình hành ADME là hình thoi. b) Chứng minh rằng BD EC DM ME. c) Cho 2 2 9 16 BDM CME S cm S cm. Tính ABC S (ký hiệu S là diện tích tam giác). d) Chứng minh rằng AM BC AC BM AB CM.
Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Yên Phong - Bắc Ninh
Đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 14 tháng 04 năm 2014. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Yên Phong – Bắc Ninh : + Cho hình thang ABCD vuông tại A và D. Biết CD = 2AB = 2AD và BC = a2. Gọi E là trung điểm của CD. a. Tứ giác ABED là hình gì? Tại sao? b. Tính diện tích hình thang ABCD theo a. c. Gọi I là trung điểm của BC, H là chân đường vuông góc kẻ từ D xuống AC. Tính góc HDI? + Cho biểu thức. a. Rút gọn biểu thức A. b. Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên. c. Tìm x để A. + Phần dành cho thí sinh trường đạị trà: Cho a, b, c là 3 cạnh của tam giác, p là nửa chu vi. Phần dành cho thí sinh trường THCS Yên Phong: Cho a, b, c, d là các số dương. Chứng minh rằng.