Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2017 2018 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 2 (HK2) lớp 10 môn Toán năm 2017 2018 trường THPT chuyên Hà Nội Amsterdam Bản PDF Đề thi học kỳ 2 Toán lớp 10 năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 16 câu, chiếm 40% số điểm, phần tự luận gồm 4 câu, chiếm 60% số điểm, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán lớp 10 năm học 2017 – 2018 : + Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;-1) và B(3;4). Giả sử (d) là một đường thẳng bất kỳ luôn đi qua điểm B. Khi khoảng cách từ A đến đường thẳng (d) đạt giá trị lớn nhất, đường thẳng (d) có phương trình nào sau đây? + Khi thống kê điểm môn Toán trong một kỳ thi của 200 em học sinh thì thấy có 36 bài được điểm bằng 5. Tần suất của giá trị xi = 5 là? [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường tròn (C1), (C2) có phương trình lần lượt là (x + 1)^2 + (y + 2)^2 = 9 và (x – 2)^2 + (y – 2)^2 = 4. a) Tìm tọa độ tâm, bán kính của hai đường tròn và chứng minh hai đường tròn tiếp xúc với nhau. b) Viết phương trình đường thẳng đi qua gốc tọa độ và tạo với đường thẳng nối tâm của hai đường tròn một góc bằng 45°. c) Cho elip (E) có phương trình 16x^2 + 49y^2 = 1. Viết phương trình đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E) và (C) tiếp xúc với hai đường tròn (C1), (C2).

Nguồn: sytu.vn

Đọc Sách

Đề thi HK2 Toán 10 năm 2020 - 2021 trường THPT Nguyễn Chí Thanh - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK2 Toán 10 năm học 2020 – 2021 trường THPT Nguyễn Chí Thanh, quận Tân Bình, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 09 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi cuối học kỳ 2 Toán 10 năm 2020 - 2021 trường THPT Lê Lợi - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi cuối học kỳ 2 Toán 10 năm học 2020 – 2021 trường THPT Lê Lợi – Quảng Trị; đề được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 131, 232, 330, 433. Trích dẫn đề thi cuối học kỳ 2 Toán 10 năm 2020 – 2021 trường THPT Lê Lợi – Quảng Trị : + Trên nóc một tòa nhà có một cột ăng-ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 0 50 và 0 40 so với phương ngang. Chiều cao của tòa nhà gần nhất với số nào dưới đây? + Trên đường tròn lượng giác, cho cung lượng giác AM có số đo 2 3. Khẳng định nào sau đây đúng? A. M thuộc cung phần tư thứ IV. B. M thuộc cung phần tư thứ III. C. M thuộc cung phần tư thứ I. D. M thuộc cung phần tư thứ II. + Phần không gạch chéo ở hình sau đây (không kể bờ) biểu diễn miền nghiệm của bất phương trình nào?
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Du - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Du, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Du – TP HCM : + Tìm các giá trị của tham số m để phương trình là phương trình đường tròn trong hệ trục tọa độ Oxy. + Trong hệ trục tọa độ Oxy, viết phương trình tiếp tuyến của đường tròn biết tiếp tuyến vuông góc với đường thẳng (d). + Chứng minh rằng với mọi giá trị của x làm cho biểu thức đã cho có nghĩa.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của Elip (E) biết (E) đi qua điểm P(4;9/5) và có độ dài trục bé bằng 6. + Chứng minh rằng với mọi giá trị x làm cho biểu thức có nghĩa. + Tìm tham số m để bất phương trình sau có tập nghiệm là R.