Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Trần Mai Ninh Thanh Hóa

Nội dung Đề HSG lớp 8 môn Toán vòng 2 năm 2022 2023 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG Toán lớp 8 vòng 2 năm 2022 – 2023 trường THCS Trần Mai Ninh – Thanh Hóa Đề HSG Toán lớp 8 vòng 2 năm 2022 – 2023 trường THCS Trần Mai Ninh – Thanh Hóa Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 8 vòng 2 năm học 2022 – 2023 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa. Đề thi bao gồm các câu hỏi thú vị, thách thức và hấp dẫn để các em thử sức và phát triển khả năng toán học của mình. Dưới đây là một số câu hỏi mẫu trong đề: Cho số thực x khác 0 thỏa mãn 2^x + x^2 = x^3 đều là số hữu tỉ. Chứng minh rằng x là số hữu tỉ. Cho S là tập hợp các số nguyên dương n có dạng 2^(x+y) + 3^y trong đó x, y là các số nguyên. Chứng minh rằng nếu A thuộc S và A là số chẵn thì A chia hết cho 4 và 4 chia hết cho A. Cho tam giác ABC vuông cân tại A. Gọi M, N lần lượt là trung điểm của AB và AC. Vẽ NH vuông góc với CM tại H, HE vuông góc với AB tại E. Trên tia NH lấy điểm K sao cho NK = CM. (a) Chứng minh tứ giác ABKC là hình vuông. (b) Chứng minh HM là tia phân giác của góc BHE. (c) Giả sử góc AHC = 135 độ. Chứng minh 2HA^2 = HB^2 + HC^2. Đề thi cung cấp đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. File WORD của đề thi đang được cung cấp cho quý thầy, cô giáo để sử dụng trong quá trình giảng dạy và ôn tập cho học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 trường THCS Hải Hòa Nam Định Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Đề học sinh giỏi Toán lớp 8 năm học 2022 - 2023 trường THCS Hải Hòa Nam Định Chúng tôi xin gửi đến quý thầy cô và các em học sinh lớp 8 một bộ đề thi chọn học sinh giỏi môn Toán năm học 2022 - 2023 tại trường THCS Hải Hòa, huyện Hải Hậu, tỉnh Nam Định. Trích dẫn một số câu hỏi từ Đề thi học sinh giỏi Toán lớp 8 năm 2022 - 2023 trường THCS Hải Hòa: 1. Cho biểu thức A = x^2 + x - 2. a) Nêu điều kiện tồn tại và rút gọn biểu thức A. b) Tính giá trị của biểu thức A khi x thoả mãn: x^2 + x = 2. c) Tìm các giá trị x > 0 sao cho biểu thức 6B - A là số nguyên. 2. Cho tam giác ABC nhọn. Các đường cao AE và BF giao nhau tại H. Gọi M là trung điểm của BC. Vẽ đường thẳng a vuông góc với HM cắt AB, AC lần lượt tại I và K. a) Chứng minh. b) Kẻ đường thẳng b qua C song song với IK, b cắt AH, AB tại N và D. Chứng minh: NC = ND và HI = HK. c) Gọi G là giao điểm của CH và AB. Tìm giá trị nhỏ nhất của biểu thức P. 3. Cho hai số dương x, y thỏa mãn: x^2 + y^2 = 12 và 4x + 9y = 1. Hãy tìm giá trị nhỏ nhất của biểu thức Q = xy/(x^2 - 3y^2). Đề thi đầy thách thức này không chỉ giúp các em học sinh rèn luyện kỹ năng Toán mà còn phát triển khả năng tư duy logic và sự sáng tạo trong giải quyết vấn đề. Chúc các em học sinh có kết quả tốt trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Phụ Thái Bình
Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Phụ Thái Bình Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ Thái Bình Đề học sinh giỏi Toán lớp 8 năm 2022 – 2023 phòng GD&ĐT Quỳnh Phụ Thái Bình Xin chào quý thầy cô và các em học sinh lớp 8! Sytu hân hạnh giới thiệu đến quý vị đề thi chọn học sinh giỏi môn Toán lớp 8 năm học 2022 – 2023 từ phòng Giáo dục và Đào tạo huyện Quỳnh Phụ, tỉnh Thái Bình. Dưới đây là một số bài toán trong đề thi: 1. Xác định đa thức P(x) biết P(x) chia hết cho đa thức x + 1 dư 4, chia cho đa thức x + 2 dư 6, và chia cho đa thức x^2 + 3x + 2 được thương là x + 3 và còn dư. Đề bài yêu cầu tìm ba số dương a, b, c thoả mãn a + b + c = 1, rồi tính giá trị nhỏ nhất của biểu thức M = 1/a + 1/4b + 1/16c. 2. Trong tam giác ABC vuông tại A (AB < AC), với đường cao AH. Gọi điểm M trên tia HC sao cho HM = AH. Kết hợp với vẽ hình bình hành AHMN, MN cắt AC tại E để chứng minh các điều kiện sau: a. AB = AE; b. Ba đường thẳng AD, BE, HN đồng quy và DM // HN. 3. Cho tam giác ABC có góc ABC = 120° và đường phân giác BD, AE, CF. Câu hỏi yêu cầu chứng minh rằng 1/BD = 1/BA + 1/BC và tính góc EDF. Hy vọng rằng các em sẽ học tập và giải quyết các bài toán trên một cách chăm chỉ và thành công. Chúc các em đạt được kết quả cao trong kỳ thi học sinh giỏi Toán sắp tới!
Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM
Nội dung Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Đề học sinh giỏi lần 2 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Thủ Đức TP HCM Sytu xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 8, đề thi chọn học sinh giỏi lần thứ 2 môn Toán lớp 8 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Thủ Đức, thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn từ Đề học sinh giỏi lần 2 Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Thủ Đức - TP HCM: Cho tam giác ABC có ba góc nhọn (AB < AC) và ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: Tam giác BFC đồng dạng với tam giác BDA và góc BFD = góc ACB. b) Tia EF cắt đường thẳng BC tại K. Chứng minh: CD.FK = CK.FD. c) Gọi M là trung điểm của BC. Vẽ đường thẳng qua M vuông góc với HM, cắt AB, AD, AC tại P, Q, R. Chứng minh: PQ = QR. Hai địa điểm A và B cách nhau 200 km. Xe ô tô và xe máy khởi hành cùng lúc từ A và B đi ngược chiều. Mỗi xe đi với vận tốc khác nhau và gặp nhau tại điểm C cách A 120 km. Nếu xe ô tô khởi hành sau một giờ so với xe máy, hỏi chúng sẽ gặp nhau tại điểm D cách C bao nhiêu km? Biết vận tốc của xe ô tô lớn hơn 20 km/h so với xe máy. Cho tứ giác ABCD có các trung điểm M, N, P, Q lần lượt của các cạnh AB, BC, CD, DA. Điểm I nằm trong tứ giác ABCD. Tính diện tích tứ giác ABCD biết S(AIQM) = 32 (cm2), S(BMIN) = 50 (cm2) và S(DPIQ) = 20 (cm2). Nội dung đề thi trên cung cấp cho các em học sinh những bài toán thú vị và bổ ích, giúp họ rèn luyện kỹ năng giải quyết vấn đề, logic suy luận và tính toán trong môn học Toán. Chúc các em thành công trong kỳ thi sắp tới!
Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT thành phố Thanh Hóa
Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT thành phố Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GD&ĐT thành phố Thanh Hóa Đề học sinh giỏi Toán THCS năm 2022 - 2023 phòng GD&ĐT thành phố Thanh Hóa Chào mừng đến với đề thi chọn học sinh giỏi môn Toán THCS cấp thành phố năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo thành phố Thanh Hóa tổ chức. Kỳ thi sẽ diễn ra vào ngày 10 tháng 03 năm 2023. Dưới đây là một số câu hỏi đặc sắc từ đề thi: 1. Tìm nghiệm nguyên của phương trình: \( x^2y^2 = 4x^2y - y^3 - 8 + 3y^2 - 1 \). 2. Cho số tự nhiên \( n \geq 2 \) và số nguyên tố \( p \) thoả mãn \( p - 1 \) chia hết cho \( n \) đồng thời \( n^3 - 1 \) chia hết cho \( p \). Chứng minh rằng: \( n + p \) là một số chính phương. 3. Cho hình vuông \( ABCD \) cạnh \( a \). Trên cạnh \( BC \) lấy điểm \( M \) (khác \( B \) và \( C \)), qua điểm \( A \) kẻ tia \( Ax \) vuông góc với \( AM \) cắt tia \( CD \) tại điểm \( F \). - Chứng minh rằng \( AM = AF \). - Trên cạnh \( CD \) lấy điểm \( N \) sao cho \( MAN = 45^\circ \), gọi giao điểm của \( AM \), \( AN \) với \( BD \) lần lượt tại \( Q \) và \( P \); gọi \( I \) là giao điểm của \( MP \) và \( NQ \). Chứng minh: \( AI \) vuông góc \( MN \) tại \( H \). - Tìm giá trị nhỏ nhất của diện tích tam giác \( AMN \) khi \( M \), \( N \) thay đổi. Hy vọng các em học sinh sẽ học tập và ôn tập chuẩn bị tốt để đạt kết quả cao trong kỳ thi này. Chúc các em thành công!