Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Anh Sơn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Anh Sơn – Nghệ An : + Một người mang một số tiền vào siêu thị mua hoa quả và nhẩm tính với số tiền đó có thể mua được 3kg nho hoặc 4kg táo hoặc 5kg mận. Tính giá tiền mỗi loại, biết 3kg táo đắt hơn 2kg mận là 210 000 đồng. + Cho tam giác ABC vuông cân tại A. Gọi D là trung điểm BC. a) Chứng minh các tam giác DAB và DAC vuông cân. b) Lấy điểm M bất kỳ trên đoạn CD. Kẻ các đoạn thẳng BE và CF vuông góc với đường thẳng AM (E; F thuộc đường thẳng AM). Chứng minh rằng: BE = AF. c) Chứng minh tam giác DEF vuông cân. + Cho ABC cân tại B, có ABC = 80 độ. Lấy điểm I nằm trong tam giác sao cho IAC = 10 độ và ICA = 30 độ. Tính số đo AIB.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 7 lần 2 năm 2015 - 2016 trường THCS Bồ Lý - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 lần 2 năm 2015 – 2016 trường THCS Bồ Lý – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho một dãy số gồm tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 30 là: -29, -28, -27, …, -1, 0, 1, …,27, 28, 29. Các số nguyên trên được đánh số thứ tự một cách tùy ý. Lấy mỗi số đó trừ đi số thứ tự của nó ta được một hiệu. Hãy tính tổng của tất cả các hiệu đó. + Cho tam giác ABC vuông tại A, đường cao AH (H BC). Về phía ngoài của tam giác ABC vẽ các tam giác ABE vuông cân tại B và tam giác ACF vuông cân tại C. Trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh rằng: a) 0 BAH EBC 180 từ đó suy ra BAI EBC. b) BI = CE và ba điểm E, A, F thẳng hàng. c) Ba đường thẳng AH, CE, BF cắt nhau tại một điểm. + Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện: a ab a b b. Tính giá trị của biểu thức 2 2 Ta b.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Yên Lập - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Yên Lập – Phú Thọ : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. Chứng minh: a) K là trung điểm của AC. b) KMC là tam giác đều. c) Cho BK = 2cm. Tính các cạnh AKM. + Tìm nghiệm nguyên dương của phương trình x + y + z = xyz.
Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.