Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Sơn Hòa Phú Yên

Nội dung Đề thi chọn HSG huyện lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Sơn Hòa Phú Yên Bản PDF - Nội dung bài viết Sytu giới thiệu về Đề Thi Chọn HSG Huyện Lớp 8 Môn Toán Sytu giới thiệu về Đề Thi Chọn HSG Huyện Lớp 8 Môn Toán Chào đón quý thầy cô giáo và các em học sinh lớp 8! Sytu hân hạnh giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 cho năm học 2021 - 2022, được tổ chức bởi Phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 16 tháng 04 năm 2022. Một cơ hội để các em học sinh thể hiện tài năng và kiến thức Toán của mình, cũng như thách thức mình với những bài toán thú vị và khó khăn. Hy vọng rằng các em sẽ cố gắng hết mình và có kết quả xuất sắc trong kỳ thi sắp tới. Chúng tôi tin rằng sự nỗ lực của các em sẽ được đền đáp xứng đáng. Hãy chuẩn bị kỹ lưỡng, rèn luyện kiến thức và kỹ năng giải bài toán Toán để chuẩn bị cho kỳ thi sắp tới. Chúc các em thành công và đạt kết quả tốt trong kỳ thi chọn HSG huyện môn Toán lớp 8 năm học 2021 - 2022!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.
Đề học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Cao Lộc - Lạng Sơn
Đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Cao Lộc – Lạng Sơn : + Cho a và b là hai số tự nhiên. Biết rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Hỏi tích ab chia cho 5 dư bao nhiêu? + Giải phương trình. + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh: BC AH HC.
Đề chọn học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Bắc Ninh
Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh : + Đa thức f(x) chia cho x + 1 thì được dư là 5, nếu chia cho x2 + 1 thì được dư là x + 2. Tìm dư trong phép chia f(x) cho x3 + x2 + x + 1. + Tìm các số nguyên x, y thỏa mãn: 5x + 53 = 2xy + 8y^2. + Cho hình vuông ABCD, gọi E là điểm bất kỳ trên cạnh BC, tia AE cắt DC tại M, tia DE cắt AB tại N, BM cắt CN tại K, NC cắt AD tại I. 1. Chứng minh: BC^2 = BN.CM và BM vuông góc với CN. 2. Gọi Q là hình chiếu của I trên BC. Tính góc AKQ. 3. Xác định vị trí của E trên cạnh BC để chu vi tam giác BKC lớn nhất.