Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hình học không gian - Đặng Thành Nam

Tài liệu gồm 36 trang trình bày phương pháp giải các dạng toán hình học không gian và các ví dụ minh họa có lời giải chi tiết. Các nội dung chính trong tài liệu : Các yếu tố trong tam giác cần nắm vững Các công thức tính thể tích Phương pháp xác định chiều cao của khối chóp + Loại 1: Khối chóp có một cạnh vuông góc với đáy đó chính là chiều cao của khối chóp. + Loại 2: Khối chóp có một mặt bên vuông góc với đáy thì đường cao chính là đường kẻ từ đỉnh khối chóp đến giao tuyến của mặt bên đó với đáy khối chóp. + Loại 3: Khối chóp có hai mặt bên kề nhau cùng vuông góc với đáy thì đường cao chính là giao tuyến của hai mặt bên đó. + Loại 4: Khối chóp có các cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh khối chóp đến tâm vòng tròn ngoại tiếp đáy + Loại 5: Khối chóp có các mặt bên cùng tạo với đáy một góc bằng nhau thì đường cao là đường kẻ từ đỉnh đến tâm vòng tròn nội tiếp đáy. + Loại 6: Khối chóp có hai mặt bên cùng tạo với đáy một góc bằng nhau thì chân đường cao khối chóp hạ từ đỉnh sẽ nằm trên đường phân giác của góc tạo bởi hai cạnh nằm trên mặt đáy của hai mặt bên. Chẳng hạn khối chóp S.ABCD có hai mặt bên (SAC) và (SAB) cùng tạo với đáy góc a khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường phân giác của góc BAC. + Loại 7: Khối chóp có hai cạnh bên bằng nhau hoặc cùng tạo với đáy một góc bằng nhau thì chân đường cao hạ từ đỉnh khối chóp nằm trên đường trung trực nối giữa hai giao điểm của hai cạnh bên với đáy. Chẳng hạn khối chóp S.ABCD có cạnh SB, SD khi đó chân đường cao của khối chóp hạ từ đỉnh S nằm trên đường trung trực của BD. Việc xác định chân đường cao của khối chóp giúp ta giải quyết bài toán [ads] + Tính thể tích khối chóp. + Tính góc tạo bởi đường thẳng hoặc mặt phẳng bên với đáy hoặc tính góc giữa hai mặt bên khối chóp(góc tạo bởi cạnh bên và mặt đáy chính là góc tạo bởi cạnh bên và đường thẳng nối chân đường cao khối chóp và giao điểm của cạnh bên với đáy). + Tính khoảng cách từ một điểm tới một mặt phẳng. Phương pháp tính thể tích khối đa diện + Khi xác định được chiều cao khối chóp thì áp dụng cách tính trực tiếp thể tích khối chóp. + Phân chia khối đa diện thành nhiều khối đa diện hơn và dễ tính thể tích hơn. + Dùng tỷ số thể tích. Khoảng cách từ một điểm đến một mặt phẳng Tìm tâm và bán kính mặt cầu ngoại tiếp khối đa diện Ví dụ minh họa có lời giải chi tiết Bài tập áp dụng tự luyện

Nguồn: toanmath.com

Đọc Sách

Tổng hợp lý thuyết nón - trụ - cầu - Lê Minh Tâm
Tài liệu gồm 50 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp lý thuyết chung và hướng dẫn giải các dạng bài tập chuyên đề nón – trụ – cầu, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12 phần Hình học chương 2. Chủ đề 01 . KHỐI NÓN. + Dạng 1.1. Tính độ dài đường sinh, bán kính đáy, đường cao 5. + Dạng 1.2. Tính diện tích xung quanh – toàn phần – thể tích 6. + Dạng 1.3. Thiết diện 8. + Dạng 1.4. Nội – ngoại tiếp 9. + Dạng 1.5. Min – max liên quan khối nón 11. + Dạng 1.6. Bài toán thực tế 13. Chủ đề 02 . KHỐI TRỤ. + Dạng 2.1. Tính độ dài đường sinh, bán kính đáy, đường cao 18. + Dạng 2.2. Tính diện tích xung quanh – toàn phần – thể tích 19. + Dạng 2.3. Thiết diện 21. + Dạng 2.4. Nội – ngoại tiếp 24. + Dạng 2.5. Min – max liên quan khối trụ 26. + Dạng 2.6. Bài toán thực tế 29. Chủ đề 03 . KHỐI CẦU. + Dạng 3.1. Tính bán kính khối cầu cơ bản 39. + Dạng 3.2. Tính diện tích mặt cầu – thể tích khối cầu 40. + Dạng 3.3. Thiết diện 42. + Dạng 3.5. Nội – ngoại tiếp 44. + Dạng 3.6. Min – max liên quan khối nón 47.
Nắm trọn chuyên đề nón - trụ - cầu ôn thi THPT Quốc gia môn Toán
Tài liệu gồm 246 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp các dạng bài tập thường gặp về chuyên đề mặt nón – mặt trụ – mặt cầu, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 ôn tập hướng đến kỳ thi tốt nghiệp THPT Quốc gia môn Toán năm học 2023 – 2024. HÌNH HỌC 12 CHƯƠNG 2 . MẶT NÓN – MẶT TRỤ – MẶT CẦU. CHỦ ĐỀ 1 . MẶT NÓN TRÒN XOAY VÀ KHỐI NÓN. + Dạng 1: Tính Sxq và Stp của khối nón. Thể tích khối nón. + Dạng 2: Tính toán các yếu tố liên quan đến khối nón. CHỦ ĐỀ 2 . MẶT TRỤ TRÒN XOAY VÀ KHỐI TRỤ. + Dạng 1: Tính Sxq và Stp của khối trụ. Thể tích khối trụ. + Dạng 4: Khối tròn xoay nội, ngoại tiếp khối đa diện. + Dạng 5: Cực trị khối nón, khối trụ. + Dạng 6: Toán thức tế liên quan đến khối nón, khối trụ. + Dạng 7: Tính diện tích mặt cầu và thể tích khối cầu. + Dạng 8: Khối cầu ngoại tiếp khối đa diện.
Tài liệu chuyên đề mặt nón, mặt trụ, mặt cầu
Tài liệu gồm 302 trang, tổng hợp lý thuyết, các dạng toán và bài tập tự luận + trắc nghiệm chuyên đề mặt nón, mặt trụ, mặt cầu, từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình môn Toán 12. I. MẶT TRÒN XOAY – NÓN – TRỤ. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. + Dạng 1. Xác định các yếu tố cơ bản (r, l, h) của hình nón. Tính diện tích xung quanh, diện tích toàn phần của hình nón. Tính thể tích khối nón. + Dạng 2. Tính diện tích xung quanh, diện tích toàn phần và thể tích khối trụ. II. MẶT CẦU. 1. Lý thuyết. 2. Hệ thống bài tập tự luận. III. HỆ THỐNG BÀI TẬP TRẮC NGHIỆM. 1. Bài tập trắc nghiệm trích từ đề tham khảo và đề chính thức của Bộ Giáo dục và Đào tạo từ năm 2017 đến nay. 2. Mặt nón, hình nón và khối nón. 3. Mặt trụ, hình trụ và khối trụ. 4. Mặt cầu và khối cầu.
Chuyên đề mặt nón, mặt trụ, mặt cầu - Phạm Hoàng Long
Tài liệu gồm 74 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, bao gồm lý thuyết trọng tâm, công thức cần nhớ, bài tập trắc nghiệm và bài tập tự luận chuyên đề mặt nón, mặt trụ, mặt cầu; giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2 và ôn thi tốt nghiệp THPT, tuyển sinh vào Cao đẳng – Đại học. Nón – Trụ – Cầu. 1. Hình nón. 2. Hình trụ. 3. Hình cầu. 4. Hình nón, hình trụ, hình cầu nội tiếp (ngoại tiếp). Bài tập tự luận. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện. Bài tập trắc nghiệm. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện.