Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức môn Toán lớp 9 phần Đại số

Tài liệu gồm 32 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán Tiểu Học – THCS – THPT Việt Nam, tổng hợp kiến thức môn Toán lớp 9 phần Đại số, giúp học sinh lớp 9 tra cứu nhanh khi học chương trình Đại số 9 và ôn thi vào lớp 10 môn Toán. 1 CĂN BẬC HAI – CĂN BẬC BA. 1. Căn bậc hai – Căn bậc ba. 2. Điều kiện để biểu thức xác định (có nghĩa). 3. Liên hệ phép khai phương – phép nhân – phép chia. 4. Đưa thừa số vào trong – ra ngoài căn. 5. Trục căn thức ở mẫu. 6. Giải phương trình. 7. Các dạng toán hay gặp. 8. So sánh căn bậc hai. 9. Tính giá trị của biểu thức. 10. So sánh biểu thức có chứa biến. 11. Tìm giá trị của x thỏa mãn đẳng thức (sau rút gọn). 12. Tìm giá trị của x thỏa mãn bất phương trình (sau rút gọn). 13. Tìm x nguyên, tìm x thuộc N, tìm số nguyên lớn nhất, số nguyên nhỏ nhất để giá trị của biểu thức A nguyên. 14. Tìm giá trị của x, tìm x thuộc Q; x thuộc R để giá trị biểu thức A nguyên. 15. Tìm giá trị của tham số m để A(x) = m có nghiệm. 16. Tìm giá trị của tham số m để P > f(m) hoặc P < f(m) có nghiệm, vô nghiệm. 17. Tìm giá trị lớn nhất – giá trị nhỏ nhất của biểu thức sau rút gọn. 2 HÀM SỐ BẬC NHẤT – BẬC HAI. 1. Tìm điều kiện để hàm số là hàm số bậc nhất. 2. Hàm số đồng biến – nghịch biến. 3. Hệ số góc của đường thẳng. 4. Vẽ đồ thị hàm số bậc nhất. 5. Tính diện tích các hình – độ dài các đoạn thẳng trên hệ trục. 6. Tìm giao tuyến của hai đồ thị y = f(x) và y = g(x). 7. Vẽ đồ thị hàm số y = |f(x)|. 8. Biện luận số nghiệm của phương trình f(x) = f(m) dựa vào đồ thị. 9. Vị trí tương đối giữa hai đường thẳng. 10. Hai đường thẳng cắt nhau thỏa mãn điều kiện k. 11. Lập phương trình đường thẳng. 12. Tìm điểm cố định của y = f(x;m); chứng minh đồ thị luôn đi qua điểm cố định (hoặc tìm điểm mà đồ thị luôn đi qua). 13. Ba điểm thẳng hàng – không thẳng hàng (Ba điểm là ba đỉnh tam giác). 14. Tìm điều kiện tham số để ba đường thẳng đồng quy. 15. Khoảng cách từ gốc tọa độ đến đường thẳng. 3 ĐỒ THỊ HÀM SỐ 1. Tính chất. 2. Điểm thuộc đồ thị. 3. Vị trí tương đối của đường thẳng y = f(x) = mx + n và Parabol y = g(x) = ax2. 4 GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH HOẶC HỆ PHƯƠNG TRÌNH. 1. Phương pháp chung. 2. Dạng toán cấu tạo số. 3. Dạng toán làm chung – làm riêng – vòi nước. 4. Dạng toán chuyển động. 5. Dạng toán có nội dung hình học. 6. Dạng toán năng suất – phần trăm. 7. Dạng toán có nội dung lí hóa. 5 HỆ PHƯƠNG TRÌNH. 1. Kiểm tra (x0;y0) có phải là nghiệm của phương trình ax + by = 0 không? 2. Tìm nghiệm tổng quát của phương trình ax + by = 0. 3. Tìm nghiệm nguyên, nguyên dương, nguyên âm của ax + by = 0. 4. Dự đoán số nghiệm của hệ phương trình. 5. Giải hệ phương trình bằng phương pháp thế. 6. Giải hệ phương trình bằng phương pháp cộng. 7. Giải hệ phương trình bằng phương pháp đặt ẩn phụ. 8. Hệ phương trình chứa dấu giá trị tuyệt đối. 9.Tìm hệ số a; b biết hệ a1x + b1y = c1 và a2x + b2y = c2 có nghiệm là x0;y0. 10. Hệ phương trình tương đương. 11. Giải và biện luận hệ phương trình. 12. Tìm m để hệ có nghiệm duy nhất thỏa mãn điều kiện K. 13. Tìm hệ thức độc lập giữa x, y không phụ thuộc vào m (tìm quỹ tích điểm M(x;y) hoặc chứng minh M(x;y) nằm trên đường thẳng cố định). 6 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI I. 7 HỆ PHƯƠNG TRÌNH ĐỐI XỨNG LOẠI II. 8 HỆ ĐẲNG CẤP BẬC HAI. 9 PHƯƠNG TRÌNH BẬC HAI ax2 + bx + c = 0. 1. Giải phương trình ax2 + bx + c = 0. 2. Tìm hai số biết tổng và tích. 3. Định lý Vi-Ét. 4. Mối liên hệ giữa hai nghiệm x1; x2. 5. Giải và biện luận ax2 + bx + c = 0. 6. Chứng minh phương trình luôn có nghiệm – vô nghiệm. 7. Phương trình có hai nghiệm phân biệt – Phương trình có nghiệm kép. 8. Lập phương trình bậc hai khi biết nghiệm. 9. Tìm m để phương trình có nghiệm x0. 10. Phương trình có hai nghiệm dương phân biệt (nằm bên phải Oy). 11. Phương trình có hai nghiệm âm phân biệt (nằm bên trái trục tung). 12. Phương trình có hai nghiệm trái dấu + cùng dấu (nằm về hai phía hoặc cùng phía với Oy). 13. Tìm m để phương trình có ít nhất một nghiệm dương. 14. Phương trình có một nghiệm dương. 15. Tìm m để phương trình có ít nhất một nghiệm âm. 16. Phương trình có một nghiệm âm. 17. Tìm m để phương trình có một nghiệm. 18. Phương trình có hai nghiệm đối nhau. 19. Phương trình có hai nghiệm là nghịch đảo nhau. 20. Chứng minh có ít nhất một phương trình có nghiệm. 21. Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện. 22. Hệ thức giữa x1; x2 không phụ thuộc m. 23. Tìm giá trị lớn nhất – nhỏ nhất của biểu thức chứa x1; x2. 24. Phương trình có hai nghiệm phân biệt nguyên. 25. Tìm m để phương trình a1x2 + b1x + c1 = 0 và a2x2 + b2x + c2 = 0 có nghiệm chung. 26. So sánh một số với nghiệm của phương trình ax2 + bx + c = 0. 10 PHƯƠNG TRÌNH BẬC BA y = ax3 + bx2 + cx + d = 0. 1. Phương trình có 3 nghiệm phân biệt. 2. Phương trình có hai nghiệm phân biệt. 3. Phương trình có một nghiệm. 11 PHƯƠNG TRÌNH BẬC BỐN y = ax4 + bx2 + c. 1. Cách giải ax4 + bx2 + c = 0. 2. Phương trình có 4 nghiệm. 3. Phương trình có 3 nghiệm. 4. Phương trình có hai nghiệm. 5. Phương trình có 1 nghiệm. 6. Phương trình vô nghiệm. 7. Phương trình (x + a)(x + b)(x + c)(x + d) = m với a + b = c + d. 8. Phương trình hồi quy ax4 + bx3 + cx2 + dx + e = 0 và ad2 = eb2. 9. Phương trình dạng (x + a)4 + (x + b)4 = c. 10. Phương trình dạng (x + a)(x + b)(x + c)(x + d) = rx2 với ab = cd. 11. Phương trình ax4 + bx3 + cx2 + bx + a = 0.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn thức bậc hai và hằng đẳng thức $\sqrt {A^2} = \left| A \right|$ trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Căn thức bậc hai. a. Định nghĩa: Với A là một biểu thức đại số thì A được gọi là căn thức bậc hai của A và A gọi là biểu thức lấy căn hay là biểu thức dưới dấu căn. b. A có nghĩa (hay xác định) khi 1 A 0 A ⇒ có nghĩa khi A > 0. Ví dụ: 3x có nghĩa khi 30 0 x x. 2. Hằng đẳng thức. Ví dụ 1: 2 2 12 12 12. Ví dụ 2: Rút gọn biểu thức sau: 2 (2) x với x ≥ 2. B. Bài tập và các dạng toán. Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Rút gọn các biểu thức chứa biến. Dạng 4: giải phương trình. Dạng 5: Tìm GTLN, GTNN của biểu thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép chia và phép khai phương
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép chia và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với A B 0 0 thì A A B B. 2. Quy tắc khai phương một thương: Muốn khai phương A B (với A B 0 0), ta khai phương A khai phương B rồi lấy thương của hai kết quả. Ta có: 0 0 A A A B. 3. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số A ≥ 0 cho căn bậc hai của số B > 0, ta có thể chia A cho B rồi khai phương kết quả đó 0 0 A A A B. B. Bài tập và các dạng toán. Dạng 1 : Thực hiện phép tính. Cách giải: Áp dụng công thức khai phương một thương. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng quy tắc khai phương một thương. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép nhân và phép khai phương
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép nhân và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với hai số a b 0 ta có: ab a b. Chú ý: Định lí trên còn có thể mở rộng cho tích của nhiều số không âm. 2. Quy tắc khai phương một tích. Với A B 0 0 ta có: AB A B. Mở rộng: Với 1 2 0 0 … 0 AA n ta có: 1 2 1 2 A A n n. 3. Quy tắc nhân các căn bậc hai. Với hai biểu thức A B 0 0 ta có: A B AB. Chú ý: Với A ≥ 0, ta có: 2 2 A A AA. B. Bài tập và các dạng toán. Dạng 1 : Tính giá trị biểu thức. Cách giải: Áp dụng công thức khai phương một tích. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng công thức khai phương của một tích. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. Dạng 4 : Chứng minh đẳng thức. Cách giải: Áp dụng bất đẳng thức Côsi cho các số không âm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề rút gọn biểu thức chứa căn thức bậc hai
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề rút gọn biểu thức chứa căn thức bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. KIẾN THỨC CẦN NHỚ. Bước 1: Tìm điều kiện xác định của biểu thức. Bước 2: Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Bước 3: Quy đồng. Bước 4: Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Bước 5: Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Bước 6: Phân tích tử thành nhân tử. Bước 7: Rút gọn lần cuối. CÁC DẠNG TOÁN. Dạng 1 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Cách giải: Thực hiện theo hai bước: Bước 1: Để rút gọn biểu thức chứa căn bậc hai đã cho, ta sử dụng các phép biến đổi như đưa thừa số ra ngoài hoặc vào trong dấu căn, trục căn thức ở mẫu, quy đồng mẫu thức … một cách linh hoạt. Bước 2: Để tìm giá trị của biểu thức khi biết giá trị của biến ta rút gọn giá trị của biến (nếu cần) sau đó thay vào biểu thức đã được rút gọn ở trên và tính kết quả. Dạng 2 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Cách giải: Để tìm giá trị của biến khi biết giá trị của biẻu thức tá ử dụng kết quả biểu thức rút gọn và giá trị đã biết của biểu thức trong đề bài để tìm ra kết quả. Dạng 3 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Cách giải: Ta xét hai trường hợp sau: Trường hợp 1: Tìm giá trị nguyên của biến để biểu thức nhậ giá trị nguyên. Trường hợp 2: Tìm giá trị thực của biến để biểu thức nhận giá trị nguyên. Dạng 4 : Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Cách giải: Để so sánh một biểu thức M với một số a, ta xét hiệu M – a và xét dấu của hiệu này, từ đó đi đến kết quả của phép so sánh. Dạng 5 : Rút gọn biểu thức chứa căn bậc hai và tìm GTNN (hoặc GTLN) của biểu thức. Cách giải: Chú ý rằng: – Biểu thức P có giá trị lớn nhất là a, ký hiệu P max a nếu P a với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. – Biểu thức P có giá trị nhỏ nhất là b, ký hiệu, P b min nếu P b với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. BÀI TẬP TỔNG HỢP. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.