Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn tập góc và khoảng cách vận dụng cao

Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề góc và khoảng cách vận dụng cao (VDC) lớp 11 THPT. Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 1). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 2). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 3). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 4). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 5). Vận dụng cao góc nhị diện – (phần 1). Vận dụng cao góc nhị diện – (phần 2). Vận dụng cao góc nhị diện – (phần 3). Vận dụng cao góc nhị diện – (phần 4). Vận dụng cao góc nhị diện – (phần 5). Vận dụng cao góc nhị diện – (phần 6). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 1). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 2). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 3). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 4). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 5). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 1). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 2). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 3). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 4). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 5). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 7). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 8). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 9). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 10). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 11). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 12). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 13). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 14).

Nguồn: toanmath.com

Đọc Sách

429 câu trắc nghiệm chuyên đề quan hệ vuông góc trong không gian - Phạm Văn Huy
Tài liệu gồm 45 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề quan hệ vuông góc trong không gian phân loại theo chủ đề, đáp án nằm cuối tài liệu. Trích dẫn tài liệu : + Cho hình tứ diện OABC với OA, OB, OC đôi một vuông góc và OA = OB = OC. Gọi I là trung điểm của BC, J là trung điểm AI, Gọi K, L lần lượt là hình chiếu vuông góc của O lên AI và của J lên OC. Chọn khẳng định đúng trong các khẳng định sau? A. Đoạn vuông góc chung của AI và OC là JLQ B. Đoạn vuông góc chung của AI và OC là IC C. Đoạn vuông góc chung của AI và OC là OK D. Các khẳng định trên đều sai [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường thẳng vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường thẳng này và vuông góc với đường thẳng kia B. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kỳ thuộc a tới mp(P) C. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kỳ trên b D. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia B. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó C. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia D. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó