Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KĐCL mũi nhọn Toán 7 năm 2023 - 2024 phòng GDĐT Nam Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi kiểm định chất lượng mũi nhọn môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề KĐCL mũi nhọn Toán 7 năm 2023 – 2024 phòng GD&ĐT Nam Đàn – Nghệ An : + Ba lớp 7A, 7B, 7C cùng mua một số bút bi để ủng hộ cho các bạn vùng cao, lúc đầu số bút bi dự định chia cho 3 lớp 7A, 7B, 7C lần lượt tỷ lệ với 5 : 6 : 7 nhưng sau đó lại chia theo tỷ lệ 4 : 5 : 6 nên có một lớp nhận mua nhiều hơn lúc đầu 5 cái. Hãy tính tổng số bút bi mà ba lớp đã mua để ủng hộ cho các bạn vùng cao. + Tìm số tự nhiên có 2 chữ số biết rằng nhân số đó với 135 ta được một số chính phương. + Cho tam giác vuông tại A (AB > AC), vẽ phân giác CE (E thuộc AB). Trên cạnh BC lấy điểm H sao cho CH = CA. Gọi N là giao điểm của AH và CE. a) Chứng minh N là trung điểm của AH. b) Gọi D là trung điểm NH. Đường thẳng qua D vuông góc với NH tại D cắt EH tại K. Chứng minh NK song song với AB. c) Trên cạnh AH lấy các điểm I và Q sao cho AI = IQ = QH. So sánh hai góc ACI và ICQ.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic tài năng trẻ Toán 7 năm 2018 - 2019 quận Đống Đa - Hà Nội
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 – 2019 cụm trường THCS quận Đống Đa – Hà Nội gồm 01 trang với 4 câu tự luận, đề nhằm giao lưu và tuyển chọn các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội để tuyên dương, khen thưởng, thúc đẩy nâng cao chất lượng môn Toán 7.
Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Cho các số nguyên dương a; b; c; d; e thỏa mãn: chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số. + Cho tỷ lệ thức: a c b d. Chứng minh rằng: 2 3 2 3 2 3 2 3 a b c d a b c d (giả thiết các tỷ lệ thức đều có nghĩa).