Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông

Nội dung Chuyên đề một số hệ thức về cạnh và góc trong tam giác vuông Bản PDF - Nội dung bài viết Tài liệu Chuyên đề về cạnh và góc trong tam giác vuông Tài liệu Chuyên đề về cạnh và góc trong tam giác vuông Tài liệu này có tổng cộng 52 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nội dung của tài liệu tập trung vào việc tổng hợp kiến thức quan trọng về cạnh và góc trong tam giác vuông, cung cấp phân dạng và hướng dẫn cách giải các dạng bài tập tự luận & trắc nghiệm liên quan đến chuyên đề này. Tài liệu này sẽ hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 9, đặc biệt là trong bài số 4 về tam giác vuông. Nội dung cụ thể bao gồm: KIẾN THỨC CẦN NHỚ: I. Định lí cơ bản: Trong một tam giác vuông, mỗi cạnh góc vuông bằng: Cạnh huyền nhân với sin góc đối hoặc nhân với cosin góc kề. Cạnh góc vuông kia nhân với tang góc đối hoặc nhân với cotang góc kề. II. Giải tam giác vuông: Là tìm tất cả các cạnh và góc của tam giác vuông khi biết hai yếu tố của nó (trong đó ít nhất có một yếu tố về độ dài). CÁC DẠNG BÀI BẢN CƠ BẢN VÀ NÂNG CAO BÀI TẬP TỰ LUYỆN TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Tài liệu này cung cấp cho bạn những kiến thức cơ bản và nâng cao về cạnh và góc trong tam giác vuông, giúp bạn nắm vững và áp dụng chúng vào việc giải các bài tập một cách hiệu quả. Hãy cùng tìm hiểu và rèn luyện kỹ năng qua tài liệu này để đạt được kết quả tốt trong môn Toán!

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề sự xác định đường tròn, tính chất đối xứng của đường tròn
Tài liệu gồm 26 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề sự xác định đường tròn, tính chất đối xứng của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định nghĩa đường tròn. 2. Vị trí tương đối của điểm M và đường tròn (O;R). 3. Cách xác định một đường tròn. 4. Đường tròn ngoại tiếp tam giác. 5. Tính chất đối xứng của đường tròn. B. Bài tập và các dạng toán. Dạng 1 : Chứng minh các điểm cho trước cùng nằm trên một đường tròn. Cách giải: + Cách 1: Chứng minh các điểm cho trước cùng cách đều một điểm cho trước nào đó. + Cách 2: Sử dụng kết quả: Nếu ABC = 90 độ thì B thuộc đường tròn đường kính AC. Dạng 2 : Xác định tâm đường tròn đi qua 3 điểm. Cách giải: Ta có tâm của đường tròn đi qua 3 điểm A, B, C không thẳng hàng là giao điểm của các đường trung trực. Dạng 3 : Xác định vị trí tương đối của một điểm với một đường tròn. Cách giải: Muốn xác định vị trí của điểm M đối với đường tròn (O;R) ta so sánh khoảng cách OM với bán kính R theo bảng sau: + M nằm trên đường tròn (O): OM = R. + M nằm trong đường tròn (O): OM < R. + M nằm ngoài đường tròn (O): OM > R. Dạng 4 : Tính bán kính của đường tròn ngoại tiếp tam giác và số đo các góc liên quan. Cách giải: Ta có thể sử dụng một trong các cách sau: + Cách 1. Sử dụng tính chất đường trung tuyến trong tam giác vuông. + Cách 2. Dùng định lý Pytago trong tam giác vuông. + Cách 3. Dùng hệ thức lượng về cạnh và góc trong tam giác vuông. Dạng 5 : Chứng minh đẳng thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.
Tài liệu Toán 9 chủ đề đường kính và dây của đường tròn
Tài liệu gồm 16 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề đường kính và dây của đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. So sánh độ dài của đường kính và dây. Định lí 1: Trong các dây của đường tròn, dây lớn nhất là đường kính của đường tròn đó. 2. Quan hệ vuông góc giữa đường kính và dây. Định lí 2: Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. Định lí 3: Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. B. Bài tập và các dạng toán. Dạng 1 : Tính độ dài đoạn thẳng. Cách giải: Sử dụng các kiến thức sau đây. 1. Trong một đường tròn đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. 2. Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. 3. Dùng định lý Pytago, hệ thức lượng trong tam giác vuông. Dạng 2 : Chứng minh đẳng thức. Cách giải: – Dùng phương pháp chứng minh hai tam giác bằng nhau, đồng dạng với nhau. – Dùng quan hệ giữa cạnh và góc trong tam giác, quan hệ cạnh huyền cạnh góc vuông. – Sử dụng tính đường trung bình của tam giác, tính chất tứ giác đặc biệt. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây
Tài liệu gồm 13 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa dây và khoảng cách từ tâm đến dây trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Trong một đường tròn: – Hai dây bằng nhau thì cách đều tâm. – Hai dây cách đều tâm thì bằng nhau. 2. Trong hai dây của một đường tròn: – Dây nào lớn hơn thì dây đó gần tâm hơn. – Dây nào gần tâm hơn thì dây đó lớn hơn. B. Bài tập áp dụng. BÀI TẬP TRẮC NGHIỆM.
Tài liệu Toán 9 chủ đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối của đường thẳng và đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Vị trí tương đối của đường thẳng và đường tròn. Gọi d là khoảng cách từ tâm O của đường tròn (O;R) đến đường thẳng a, khi đó ta có: + Hệ thức: d < R – Số điểm chung: 2 – Quan hệ: Đường thẳng a cắt đường tròn (O;R) tại 2 điểm. + Hệ thức: d = R – Số điểm chung: 1 – Quan hệ: Đường thẳng a tiếp xúc đường tròn (O;R). + Hệ thức: d > R – Số điểm chung: 0 – Quan hệ: Đường thẳng a không cắt đường tròn (O;R). 2. Định lý. Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm. B. Bài tập và các dạng toán. Dạng 1 : Xác định vị trí tương đối của đường thẳng và đường tròn và ngược lại. Cách giải: So sánh d và R dựa vào bảng vị trí tương đối của đường thẳng và đường tròn đã nêu trong lý thuyết. Dạng 2 : Bài toán liên quan đến tính độ dài. Cách giải: Ta nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp điểm và sử dụng định lý Pytago. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.