Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL - Ninh Bình

Thứ Bảy ngày 11 tháng 01 năm 2020, cụm các trường THPT tại thành phố Ninh Bình và huyện Hoa Lư, tỉnh Ninh Bình tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ nhất năm học 2019 – 2020. Đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL – Ninh Bình mã đề 123 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm giúp các em học sinh khối 12 tại các trường THPT trong cụm được thử sức và rèn luyện, chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2020, đề thi có đáp án. Trích dẫn đề thi thử THPT Quốc gia 2020 môn Toán lần 1 cụm NBHL – Ninh Bình : + Người ta bỏ ba quả bóng bàn cùng kích thước vào trong một chiếc hộp hình trụ có đáy bằng hình tròn lớn của quả bóng bàn và chiều cao bằng ba lần đường kính bóng bàn. Gọi S1 là tổng diện tích của ba quả bóng bàn, S2 là diện tích xung quanh của hình trụ. Tỉ số S1/S2 bằng? + Một hộp chứa 6 viên bi đỏ, 5 viên bi vàng và 4 viên bi xanh. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để 4 viên bi được lấy ra có đủ ba màu và không có hai viên nào có số thứ tự trùng nhau. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, đường thẳng SC tạo với đáy một góc bằng 60 độ. Thể tích của khối chóp S.ABC bằng? + Cho một tứ diện đều SABC có chiều cao h. Ở ba góc của tứ diện, người ta cắt đi các tứ diện đều bằng nhau có chiều cao x để khối đa diện còn lại có thể tích bằng một nửa thể tích khối tứ diện đều ban đầu. Tìm x. + Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Các điểm E, F lần lượt là trung điểm C’B’ và C’D’. Tính diện tích thiết diện của hình lập phương ABCD.A’B’C’D’ cắt bởi mặt phẳng (AEF).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lào Cai
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Lào Cai gồm 50 câu hỏi trắc nghiệm, có đáp án và hướng dẫn giải chi tiết. Trích một số bài toán trong đề: + Cho một đồng hồ cát như hình bên dưới (gồm hai hình nón có chung đỉnh ghép lại), trong đó đường sinh bất kì của hình nón tạo với đáy một góc 60 độ. Biết rằng chiều cao của đồng hồ cát là 30cm và tổng thể tích của đồng hồ cát là 1000 cm2. Hỏi nếu cho đầy lượng cát vào phần trên khi chảy hết xuống phần dưới thì tỉ số thể tích phần cát chiếm chỗ và thể tích phần phía dưới là bao nhiêu? + Hình bên cho ta hình ảnh của một đồng hồ cát với các kích thước kèm theo OA = OB. Khi đó tỉ số tổng thể tích của hai hình nón (Vn) và thể tích hình trụ (Vt) bằng? + Một hình chóp tứ giác đều có tổng độ dài của đường cao và bốn cạnh đáy là 33. Hỏi độ dài cạnh bên ngắn nhất là bao nhiêu?
Bộ đề thi đề xuất thi THPT Quốc gia 2017 môn Toán của các trường THPT tại Bình Định
Tài liệu gồm 337 trang tuyển tập các đề thi đề xuất thi THPT Quốc gia 2017 môn Toán của các trường THPT tại Bình Định, có đáp án.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Thái Bình lần 4
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT chuyên Thái Bình lần 4 gồm 50 câu hỏi trắc nghiệm, có đáp án và lời giải chi tiết.
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Thanh Chương 1 - Nghệ An lần 1
Đề thi thử THPT Quốc gia 2017 môn Toán trường THPT Thanh Chương 1 – Nghệ An lần 1 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Cho hình tứ diện đều và hình bát diện đều cùng có cạnh bằng a. Gọi S1 là diện tích toàn phần của hình tứ diện đều và S2 là diện tích toàn phần của hình bát diện đều. Khi đó tỷ số k = S1/S2 là? + Sân trường có một bồn hoa hình tròn có tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bồn hoa, nhóm này định chia bồn hoa thành bốn phần, bởi hai đường Parabol có cùng đỉnh O và đối xứng nhau qua O. Hai đường Parabol này cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m (như hình vẽ). Phần diện tích S1, S2 dùng để trồng hoa, phần diện tích S3, S4 dùng để trồng cỏ (Diện tích làm tròn đến chữ số thập phân thứ hai). Biết kinh phí để trồng hoa là 150.000 đồng/1m2, kinh phí để trồng cỏ là 100.000 đồng/1m2. Hỏi nhà trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn). + Một khối gỗ hình trụ có chiều cao 2m, người ta xẻ bớt phần vỏ của khối gỗ đó theo bốn mặt phẳng song song với trục để tạo thành một khối gỗ hình hộp chữ nhật có thể tích lớn nhất bằng 1m3. Tính đường kính của khối gỗ hình trụ đã cho.