Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình

Nội dung Đề thi HSG lớp 10 môn Toán năm 2018 2019 trường THPT Nam Tiền Hải Thái Bình Bản PDF - Nội dung bài viết Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG lớp 10 Toán năm 2018-2019 trường THPT Nam Tiền Hải Thái Bình Đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình được thiết kế theo định dạng tự luận, bao gồm 01 trang với 05 bài toán khó. Học sinh được cấp 180 phút để hoàn thành bài thi, với ngày thi diễn ra vào ngày 06 tháng 03 năm 2019. Dưới đây là một số câu hỏi trích dẫn từ đề thi HSG Toán lớp 10 năm 2018 - 2019 trường THPT Nam Tiền Hải - Thái Bình: 1. Trong hệ trục tọa độ Oxy, hãy tìm phương trình của đường cao AD và phân giác trong CE của tam giác ABC với A(4;-1), B(1;5), C(-4;-5). 2. Với B(0;1), C(3;0), đường phân giác trong góc BAC của tam giác ABC cắt trục Oy tại M(0;-7/3), chia tam giác thành hai phần có tỉ lệ diện tích 10/11 (với phần chứa điểm B có diện tích nhỏ hơn phần chứa điểm C). Hãy tính T = a^2 + b^2 với A(a;b) và a < 0. 3. Hãy chứng minh rằng: a.sinA + b.sinB + c.sinC = 2(ma^2 + mb^2 + mc^2)/3R với mọi tam giác ABC (a = BC, b = AC, c = AB; ma, mb, mc lần lượt là độ dài đường trung tuyến hạ từ A, B, C; R bán kính đường tròn ngoại tiếp tam giác ABC). Đề thi này tập trung vào việc áp dụng các kiến thức về hình học và tính toán trong giải quyết các bài toán phức tạp, đòi hỏi học sinh phải có kiến thức chắc chắn và khả năng suy luận logic tốt. Qua đó, đề thi giúp học sinh phát triển kỹ năng tư duy, khả năng giải quyết vấn đề và xử lý tình huống.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 cụm Tân Yên - Bắc Giang
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi diễn ra vào ngày 28/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). a) Tìm các giá trị của m để phương trình có hai nghiệm. b) Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x1^2.x2^2 ≤ x1^2 + x2^2 + 4. c) Tìm các giá trị của m để phương trình có hai nghiệm phân biệt cùng thuộc đoạn [-3; 4]. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc bằng 45 độ. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.