Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số - Vũ Xuân Hưng

Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Đại số bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI. I – KIẾN THỨC CẦN NHỚ. 1. Định nghĩa căn bậc hai. 2. Các công thức vận dụng. 3. Định nghĩa căn bậc ba. 4. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Tìm x. Dạng 6: So sánh. Dạng 7: Rút gọn biểu thức và các bài tập liên quan đến rút gọn. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT. I – KIẾN THỨC CẦN NHỚ. 1. Hàm số bậc nhất. 1.1 – Khái niệm hàm số bậc nhất. 1.2 – Tính chất. 1.3 – Đồ thị của hàm số y = ax + b (a khác 0). 1.4 – Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 1.5 – Vị trí tương đối của hai đường thẳng. 1.6 – Hệ số góc của đường thẳng y = ax + b (a khác 0). II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất và các bài toán liên quan. Dạng 3: Tìm m để hai đường thẳng cắt nhau, song song, trùng nhau. Dạng 4: Xác định hàm số bậc nhất. Dạng 5: Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng lớn nhất, nhỏ nhất. Dạng 6: Xác định tham số m để đồ thị hàm số y = f(x;m) thỏa mãn một điều kiện cho trước. Dạng 7: Chứng minh 3 điểm thẳng hàng. Dạng 8: Tìm m để 3 đường thẳng đồng quy (cùng đi qua một điểm). III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 3 – HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. I – KIẾN THỨC CẦN NHỚ. 1. Giải hệ phương trình bằng phương pháp thế. 2. Giải hệ phương trình bằng phương pháp cộng đại số. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Xác định giá trị tham số m để hệ phương trình vô nghiệm. Dạng 5: Xác định giá trị tham số m để hệ phương trình đã cho có nghiệm duy nhất, tìm nghiệm duy nhất đó. Dạng 6: Tìm nghiệm x, y có chứa tham số m sau đó tìm GTLN hoặc GTNN của biểu thức cho trước. Dạng 7: Hệ phương trình chứa dấu giá trị tuyệt đối. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 4 – HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. I. Hàm số y = ax2 (a khác 0). II. Phương trình bậc hai một ẩn. 1. Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn. 4. Hệ thức Vi-et và ứng dụng. III. Các dạng bài tập cơ bản. IV. Bài tập áp dụng. CHUYÊN ĐỀ 5 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Một số dạng toán thường gặp. II – BÀI TẬP MINH HỌA. Dạng 1: Bài toán hình học. Dạng 2: Bài toán tìm số. Dạng 3: Bài toán dân số, phần trăm. Dạng 4: Bài toán năng suất. Dạng 5: Bài toán chung – riêng. Dạng 6: Bài toán chuyển động. Dạng 7: Bài toán thực tế vận dụng. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 6 – BẤT ĐẲNG THỨC – TÌM GIÁ TRỊ MIN – MAX CỦA BIỂU THỨC. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Phương pháp riêng. 2.1. Sử dụng một số bất đẳng thức cổ điển thông dụng. 2.2. Bất đẳng thức Cauchy (Cosi). 2.3. Bất đẳng thức Bunhiacopski. 2.4. Bất đẳng thức Trê-B-Sép. II – BÀI TẬP MINH HỌA.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo
Nội dung Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Các dạng toán và phương pháp giải hệ phương trình đại số Nguyễn Quốc Bảo Tài liệu này bao gồm 203 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, chuyển tập các dạng toán và hướng dẫn cách giải hệ phương trình đại số. Được xem là tài liệu lý tưởng để bồi dưỡng học sinh giỏi ở cấp độ lớp 8 và 9 cũng như ôn thi tuyển sinh vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm nhiều phần như sau: Phần I. MỘT SỐ DẠNG HỆ PHƯƠNG TRÌNH THƯỜNG GẶP 1. Hệ phương trình bậc nhất hai ẩn 2. Hệ gồm một phương trình bậc hai và một... Từ những dạng toán và phương pháp giải được tập hợp trong tài liệu này, học sinh sẽ có cơ hội hiểu rõ hơn về các kiến thức, cách giải và ứng dụng trong thực tế, từ đó nâng cao kỹ năng giải toán của mình.
Tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp
Nội dung Tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp Bản PDF - Nội dung bài viết Đánh giá tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp Đánh giá tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp Tài liệu ôn thi tuyển sinh vào môn Toán do thầy giáo Lư Sĩ Pháp biên soạn là một công cụ hữu ích giúp học sinh chuẩn bị cho kỳ thi tuyển sinh vào lớp 10. Với tổng cộng 63 trang, tài liệu tóm tắt lý thuyết và tuyển chọn các dạng bài tập phong phú, đa dạng giúp học sinh hiểu rõ hơn về các vấn đề chính trong môn Toán. Trong tài liệu, có những vấn đề cơ bản như rút gọn và chứng minh biểu thức, phương trình, hệ phương trình, ứng dụng định lí Vi-ét, đường thẳng, parabol, giải toán bằng cách lập phương trình hoặc hệ phương trình, hình học và một số khác. Các vấn đề được trình bày một cách logic, chuẩn xác, giúp học sinh nắm vững kiến thức cũng như phát triển kỹ năng giải bài tập một cách linh hoạt. Tài liệu cũng giới thiệu và hướng dẫn cách giải từng dạng bài tập một cách chi tiết, dễ hiểu. Điều này giúp học sinh tự tin hơn khi đối mặt với bài tập trong kỳ thi tuyển sinh. Tổng cộng, tài liệu ôn thi tuyển sinh vào môn Toán Lư Sĩ Pháp là một nguồn tư liệu học tập hữu ích, giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng và chuẩn bị tốt cho kỳ thi sắp tới.
Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Hình học Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Hình học của thầy Vũ Xuân Hưng Tài liệu luyện thi này bao gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng. Trong tài liệu, thầy Hưng tổng hợp kiến thức quan trọng cần nhớ, các dạng bài tập và hướng dẫn giải chi tiết. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về các chủ đề Hình học phẳng ở bậc trung học cơ sở. Đây sẽ là nguồn tài liệu hữu ích giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Phần Chuyên đề 7 - Hình học phẳng: A. Kiến thức cần nhớ: Hệ thức lượng trong tam giác vuông. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. Góc và đường tròn. B. Các dạng bài tập cơ bản: Dạng Toán lớp 1: Chứng minh tứ giác nội tiếp đường tròn. Dạng Toán lớp 2: Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng Toán lớp 3: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng Toán lớp 4: Chứng minh ba điểm thẳng hàng. Dạng Toán lớp 5: Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng Toán lớp 6: Chứng minh đường thẳng là tiếp tuyến của đường tròn. Đặc biệt, tài liệu còn bao gồm tuyển tập đề thi tuyển sinh vào lớp 10 môn Toán, giúp học sinh ôn tập kỹ lưỡng và tự tin trước kỳ thi sắp tới. Đừng bỏ lỡ cơ hội nâng cao kiến thức và kỹ năng giải bài tập của mình!
Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy
Nội dung Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bản PDF - Nội dung bài viết Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Các bài toán chứng minh ba điểm thẳng hàng ba đường thẳng đồng quy Bộ tài liệu này bao gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và chọn lọc các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy. Đây là loại bài toán thường gặp trong các bài toán hình học với nhiều sắc thái và biểu cảm khác nhau.