Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 - 2021 sở GDĐT Bến Tre

Thứ Năm ngày 17 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Bến Tre tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia lớp 12 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Quốc gia Toán 12 năm 2020 – 2021 sở GD&ĐT Bến Tre : + Cho tam giác ABC nhọn có góc BAC = 30 độ. Hai đường phân giác trong và ngoài của góc ABC lần lượt cắt đường thẳng AC tại B1 và B2; hai đường phân giác trong và ngoài của góc ACB lần lượt cắt đường thẳng AB tại C1 và C2. Giả sử đường tròn đường kính B1B2 và đường tròn đường kính C1C2 cắt nhau tại một điểm P nằm bên trong tam giác ABC. Chứng minh rằng góc BPC = 90 độ. + Cho dãy số (un) được xác định bởi: u1 = 20; u2 = 30; u_n+2 = 3.u_n+1 – u_n với n thuộc N*. Tìm tất cả các số nguyên dương n sao cho 1 + 5.u_n.u_n+1 là một số chính phương. + Cho đa thức P(x;y) không phải là đa thức hằng, thỏa mãn: P(x;y).P(z;t) = P(xz + yt;xt + yz) với mọi x, y, z, t thuộc R. Chứng minh rằng: P(x;y) chia hết cho ít nhất một trong hai đa thức Q(x;y) = x + y; H(x;y) = x – y.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Nam
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Quảng Nam Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Nam mã đề 101 gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề), kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Có bao nhiêu số tự nhiên có bảy chữ số đôi một khác nhau, gồm ba chữ số lẻ, bốn chữ số chẵn mà trong đó có đúng một chữ số lẻ xen kẽ giữa hai chữ số chẵn? + Cho tứ diện đều ABCD có cạnh bằng 22 và tâm mặt cầu ngoại tiếp của nó là O. Mặt phẳng (P) song song với hai cạnh AB, CD và cách tâm O một khoảng bằng 1/2. Diện tích thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P) bằng? + Trong không gian Oxyz, cho hai điểm A(-1;-5;2), B(3;3;-2) và đường thẳng d; hai điểm C, D thay đổi trên d sao cho CD = 63. Biết rằng khi C(a;b;c) (b < 2) thì tổng diện tích của tất cả các mặt của tứ diện ABCD đạt giá trị nhỏ nhất. Tính tổng a + b + c.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2021 – 2022 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi được biên soạn theo dạng đề 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 146. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bắc Ninh : + Trong không gian Oxyz cho điểm A 1 2 0 và mặt phẳng P x y z 2 2 3 0. Mặt phẳng 2x by cz d 0 (với b c d) đi qua điểm A, song song với trục Oy và vuông góc với P. Khi đó giá trị b c d bằng? + Cho hàm số y f x là hàm số có đạo hàm cấp hai liên tục trên. Gọi C là đồ thị của hàm số đã cho. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 0 lần lượt tạo với trục hoành góc 0 0 30 45. Tiếp tuyến với đồ thị C tại các điểm có hoành độ x x 1 2 lần lượt song song với đường thẳng 1 d y x 2 1 và vuông góc với đường thẳng 2 d y x 5. + Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài để được hình như hình 2. Quay hình 2 xung quanh trục d ta được một khối tròn xoay có thể tích bằng?
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2021 2022 sở GD ĐT Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 Trung học Phổ thông (THPT) năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào sáng thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho hàm số y có đồ thị (C), đường thẳng d: y = -x + m (m là tham số) và hai điểm M(3;4), N(4;5). Tìm các giá trị thực của m để đường thẳng d cắt (C) tại hai điểm phân biệt A, B sao cho bốn điểm A, B, M, N lập thành tứ giác lồi AMBN có diện tích bằng 2. + Cho tam giác ABC với điểm D trên cạnh BC (D khác B, D khác C) và điểm M trên đoạn AD (M khác A, M khác D). Gọi I, K lần lượt là trung điểm của MB, MC. Tia DI cắt AB tại điểm P, tia DK cắt AC tại điểm Q. Chứng minh: PQ // IK. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của AB và BC, H là giao điểm của AF và DE. Biết SH vuông góc với mặt phẳng (ABCD) và góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 60°. Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SH, DF theo a.
Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 2022
Nội dung Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 2022 Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán Trung học Phổ thông năm học 2021 – 2022; kỳ thi được diễn ra vào các ngày 04 và 05 tháng 03 năm 2022. Trích dẫn đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2021 – 2022 : + Với mỗi cặp số nguyên dương (n;m) thoả mãn n < m, gọi s(n;m) là số các số nguyên dương thuộc đoạn [n;m] và nguyên tố cùng nhau với m. Tìm tất cả các số nguyên dương m >= 2 thoả mãn đồng thời hai điều kiện sau. + Cho P(x) và Q(x) là hai đa thức khác hằng, có hệ số là các số nguyên không âm, trong đó các hệ số của P(x) đều không vượt quá 2021 và Q(x) có ít nhất một hệ số lớn hơn 2021. Giả sử P(2022) = Q(2022) và P(x), Q(x) có chung nghiệm hữu tỷ p/q khác 0 (p và q nguyên tố cùng nhau). Chứng minh rằng với mọi n. + Gieo 4 con súc sắc cân đối, đồng chất. Ký hiệu x là số chấm trên mặt xuất hiện của con súc sắc thứ i. a) Tính số các bộ có thể có. b) Tính xác suất để có một số trong bằng tổng của ba số còn lại. c) Tính xác suất để có thể chia thành hai nhóm có tổng bằng nhau.