Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàng Mai Nghệ An

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Hoàng Mai Nghệ An Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 phòng GD&ĐT Hoàng Mai Nghệ An Đề thi học sinh giỏi Toán lớp 9 năm 2022-2023 phòng GD&ĐT Hoàng Mai Nghệ An Các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý thầy cô và các bạn đề thi chọn học sinh giỏi cấp thị xã môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn một số câu hỏi trong đề thi: 1. Cho tam giác ABC có 3 góc nhọn, vẽ đường cao AD và BE. Gọi H là trực tâm của tam giác ABC. a) Chứng minh: AD.DH = DB.DC và tanB.tanC = AD/HD. b) Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định khi M là điểm di động trên đoạn thẳng BC và I là giao điểm của các đường thẳng CH và BK. 2. Cho tam giác ABC vuông cân tại A và M là điểm di động trên đường thẳng BC (M khác B, C). Hình chiếu của M trên các đường thẳng AB và AC tương ứng là H và K. Gọi I là giao điểm các đường thẳng CH và BK. Chứng minh rằng các đường thẳng MI luôn đi qua một điểm cố định. 3. Cho tam giác ABC có độ dài các cạnh là a, b, c sao cho thỏa mãn hệ thức 20bc + 11ac + 1982ab = 2022. Tìm giá trị nhỏ nhất của biểu thức M (trong đó p là nửa chu vi tam giác ABC). Chúc các em học sinh tham gia đề thi đạt kết quả cao, hãy tự tin và cố gắng hết mình để giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2016.
Đề thi chọn học sinh giỏi Toán 9 năm 2015 - 2016 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2015 – 2016 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2016; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2015 – 2016 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x m xm 2 (m là tham số, x là ẩn). 1. Chứng minh với mọi giá trị của m phương trình luôn có hai nghiệm phân biệt 1 2 x x 2. Tìm tất cả các giá trị của tham số m sao cho: 1 2 1 2 2 1 1 2 2 1 2 1 55 x x. + Cho các số thực không âm x, y, z đôi một khác nhau đồng thời thoả mãn zxzy 1. Chứng minh rằng: 222 111 4 xy zx zy. + Từ điểm M nằm ngoài đường tròn (O) vẽ các tiếp tuyến MA, MB và cát tuyến MNP với đường tròn (A, B là các tiếp điểm, N nằm giữa M và P). Gọi H là giao điểm của AB và MO. 1. Chứng minh: Tứ giác NHOP nội tiếp được đường tròn. 2. Kẻ dây cung PQ vuông góc với đường thẳng MO. Chứng minh ba điểm N, H, Q thẳng hàng. 3. Gọi E là giao điểm của MO và cung nhỏ AB của đường tròn (O). Chứng minh: NE là tia phân giác của MNH.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 - 2016 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2015 – 2016 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 06/03/2016, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 - 2015 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2014 – 2015 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 05/04/2015, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.