Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GDĐT Lạng Sơn

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào thứ Ba ngày 27 tháng 02 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Ma trận Đề thi thử tốt nghiệp THPT năm 2024 lần 1 môn Toán sở GD&ĐT Lạng Sơn : + Bài toán chỉ sử dụng tổ hợp. + Xác suất của bài toán chọn nhóm. + Giới hạn phân thức có bậc tử bằng bậc mẫu. + Góc giữa cạnh bên với mặt đáy. + KC từ chân đường cao đến mặt xiên trong hình chóp. + Tìm cực trị của hàm số khi biết đồ thị hàm số. + Tìm cực trị của hàm số khi biết BBT. + Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước. + Tìm số điểm cực trị của hàm số |f(u)| khi biết đồ thị, BBT f’(x). + Tìm tiệm cận f(x) dựa vào BBT f(x). + Tìm đường tiệm cận, số đường TC của hs. + Nhận dạng BBT hàm số bậc 3. + Tìm tọa độ giao điểm của đồ thị hai hs khi biết f(x) và g(x). + Tìm số nghiệm của pt f(x) = a khi biết đồ thị, BBT f(x). + Tập xác định của hàm số lũy thừa có số mũ hữu tỷ. + Dùng công thức biến đổi cơ số logarit rút gọn biểu thức. + Tính đạo hàm của hàm số logarit. + Tìm Min, Max của biểu thức khi có đk f(u) = f(v) chứa logarit. + Tìm số giá trị nguyên của y để PT Loga có nghiệm thỏa mãn đk bằng PP đánh giá. + GBPT Mũ cơ bản. + GBPT Logarit cơ bản. + GBPT Loga dạng tích. + Nguyên hàm cơ bản của hàm số đa thức. + Nguyên hàm cơ bản của hàm lượng giác. + Định nghĩa của tích phân. + Tính chất của tích phân. + Tích phân của hàm ẩn bằng PP từng phần. + Tích phân của hàm ẩn bằng tạo ra công thức đạo hàm tích, thương. + Biết f’(x), tính tích phân f(x). + Ý nghĩa hình học của tích phân. + Tìm khoảng đơn điệu của hàm số khi biết f’(x), BXD f’(x). + Xét tính đơn điệu của hàm số f(x) khi biết đồ thị, BBT f’(x). + Áp dụng công thức tính thể tích khối chóp. + Áp dụng công thức tính thể tích khối lăng trụ. + Tính chiều cao, khoảng cách bằng thể tích. + Thể tích khối lăng trụ đứng có góc giữa hai mp. + Tính V, Sxq hoặc Stp khi biết R, h, l. + Tính Sxq hoặc Stp khi biết R và h. + Tính V, S khi biết R. + Bài toán kết hợp hình cầu với hình trụ. + Xác định tọa độ vectơ qua phép cộng, trừ vectơ. + Tính độ dài đoạn thẳng khi biết hai đầu mút, độ dài vectơ. + Xác định tọa độ tâm, R, S, V của MC khi biết PTMC. + Viết PTMC khi biết tâm và đi qua 1 điểm. + Nhận diện phương trình mặt cầu. + Xác định VTPT khi biết PTMP. + Nhận diện điểm thuộc MP. + Viết PTMP trung trực của đoạn thẳng. + Tính KC từ điểm đến MP. + Viết PTMP chắn hai đoạn theo tỉ số.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Đại học môn Toán lần 2 trường THPT Hà Huy Tập - Hà Tĩnh
Đề thi thử Đại học môn Toán lần 2 trường THPT Hà Huy Tập – Hà Tĩnh mã đề 002 được biên soạn theo cấu trúc tương tự đề minh họa môn Toán 2018 do Bộ Giáo dục và Đào tạo ban hành hồi tháng 1/2018, đề thi thử Toán gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, nội dung đề gôm chương trình Toán 11 và Toán 12. Trích dẫn đề thi thử Đại học lần 2 môn Toán : + Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp. Ngọn tháp có dạng một hình chóp tứ giác S.ABCD có đáy ABCD là một hình vuông, SA = SB = SC = SD = 600m và góc ASB = góc BSC = góc CSD = góc DSA = 15 độ. Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường điện từ A đến Q gồm 4 đoạn thẳng AM, MN, NP và PQ (Hình vẽ). Để tiết kiệm kinh phí, kĩ sư đã nghiên cứu và có được chiều dài đường điện từ A đến Q ngắn nhất. Khi đó hãy cho biết tỉ số k = (AM + MN)/(NP + PQ). [ads] + Cho đa giác đều 32cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một hình chữ nhật là? + Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;2) và mặt cầu (S): x^2 + y^2 + z^2 – 2y – 2z – 7 = 0. Mặt phẳng (P) đi qua A và cắt (S) theo thiết diện là đường tròn (C) có diện tích nhỏ nhất. Bán kính đường tròn (C) là?
Đề thi khảo sát Toán 12 lần 2 năm 2017 - 2018 trường Phan Chu Trinh - Đăk Lăk
Đề thi khảo sát Toán 12 lần 2 năm học 2017 – 2018 trường THPT Phan Chu Trinh – Đăk Lăk mã đề 132 được biên soạn theo cấu trúc đề minh họa môn Toán 2018 của Bộ Giáo dục và Đào tạo nhằm thi thử THPTQG để kiểm tra chất lượng ôn tập của học sinh khối 12, đề gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, nội dung đề gồm cả chương trình Toán 11 và Toán 12, đề thi khảo sát Toán 12 có đáp án . Trích dẫn đề khảo sát Toán 12 : + Một nhóm 10 học sinh gồm 6 nam trong đó có Quang, và 4 nữ trong đó có Huyền được xếp ngẫu nhiên vào 10 ghế trên một hàng ngang để dự lễ sơ kết năm học. Xác suất để xếp được giữa 2 bạn nữ gần nhau có đúng 2 bạn nam, đồng thời Quang không ngồi cạnh Huyền là? + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2; -3; 7), B(0; 4; -3) và C(4; 2; 5). Biết điểm M(x0; y0; z0) nằm trên mp(Oxy) sao cho |vtMA + vtMB + vtMC| có giá trị nhỏ nhất. Khi đó tổng P = x0 + y0 + z0 bằng? [ads] + Biết rằng năm 2001, dân số Việt Nam là 78685800 người và tỉ lệ tăng dân số năm đó là 1,7%. Cho biết sự tăng dân số được ước tính theo công thức S = A.e^Nr (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm). Cứ tăng dân số với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu người?
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Lê Quý Đôn - Hà Nội lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Lê Quý Đôn – Hà Nội lần 1 mã đề 570 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được tổ chức vào ngày 04/03/2018 nhằm kiếm tra chất lượng ôn tập chuẩn bị cho kỳ thi THPT Quốc gia năm 2018, đề thi thử được biên soạn theo mẫu đề tham khảo môn Toán 2018 do Bộ Giáo dục và Đào tạo ban hành. Trích dẫn đề thi thử THPT Quốc gia 2018 môn Toán : + Bạn A muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 (cm). Bạn muốn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M, N thuộc cạnh BC, P và Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Thể tích lớn nhất của chiếc thùng mà bạn A có thể làm được là? [ads] + Cho hàm số y = x^3 – 2009x có đồ thị là (C). M1 là điểm trên (C) có hoành độ độ x1 = 1. Tiếp tuyến của (C) tại điểm M1 cắt (C) tại điểm M2 khác M1, tiếp tuyến của (C) tại điểm M2 cắt (C) tại điểm M3 khác M2, …, tiếp tuyến của (C) tại điểm Mn-1 cắt (C) tại điểm Mn khác Mn-1 (n = 4, 5, …), gọi (xn, yn) là tọa độ điểm Mn. Tìm n để 2009xn + yn + 2^2013 = 0. + Lập các số tự nhiên có 7 chữ số từ các chữ số 1, 2, 3, 4. Tính xác suất để số lập được thỏa mãn: các chữ số 1, 2, 3 có mặt hai lần, chữ số 4 có mặt một lần đồng thời các chữ số lẻ đều nằm ở các vị trí lẻ (tính từ trái sang phải).
Đề thi thử Toán THPT Quốc gia 2018 lần 2 trường THPT Kinh Môn - Hải Dương
Đề thi thử Toán THPT Quốc gia 2018 lần 2 trường THPT Kinh Môn – Hải Dương mã đề 001 gồm 8 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề bám sát cấu trúc đề minh họa môn Toán 2018 do Bộ Giáo dục và Đào tạo ban hành với nội dung gồm cả chương trình Toán 11 và Toán 12, đề thi thử Toán có đáp án  các mã đề 001, 002, 003 và 004. Trích dẫn đề thi thử Toán THPT Quốc gia 2018 : + Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh bằng 10 cm bằng cách khoét đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5cm, OH = 4cm. Tính diện tích bề mặt hoa văn đó. + Cho hai đường tròn (O1; 5) và (O2; 3) cắt nhau tại hai điểm A, B sao cho AB là một đường kính của đường tròn (O2; 3). Gọi (D) là hình phẳng được giới hạn bởi hai đường tròn (ở ngoài đường tròn lớn, phần được gạch chéo như hình vẽ). Quay (D) quanh trục O1O2 ta được một khối tròn xoay. Tính thể tích V của khối tròn xoay được tạo thành. [ads] + Chỉ ra khẳng định sai trong các khẳng định sau: A. Khối lăng trụ có đáy có diện tích là B, đường cao của lăng trụ là h, khi đó thể tích khối lăng trụ là V = Bh. B. Diện tích xung quanh của mặt nón có bán kính đường tròn đáy r và đường sinh l là S = πrl. C. Mặt cầu có bán kính là R thì thể tích khối cầu là V = 4πR3. D. Diện tích toàn phần của hình trụ có bán kính đường tròn đáy r và chiều cao của trụ l là Stp = 2πr(1 + r).